moja global Technical Guide

Nov 26, 2020

Contents

FLINT Prerequisites
1.1 For Windows Based systems
1.2 For Linux Based systems

FLINT Development Setup
2.1 Git and Github guide
2.2 Windows Installation
2.3 Docker Installation (for Mac and Linux Variants)
2.4 FLINT.example

GCBM Development Setup
3.1 GCBM Prerequisites
3.2 Windows Installation

Contributing

4.1 Before making a contribution
4.2 Ways to contribute to moja global
4.3 After making your first contribution
4.4 Code Contribution Best Practices
4.5 Code Of Conduct

GitHub Workflow
5.1 GitHub Repository maintenance
5.2 Bots and Integrations
5.3 Automated Checks for pull requests
5.4 FLINT Architecture
5.5 FLINT Performance
5.6 Reviewing a contribution
5.7 Manually testing a pull request

Frequently Asked Questions
6.1 Moja Global

6.2 FLINT

6.3 FLINT Installation Support

6.4 GCBM

6.5 FLINTpro

7 Join the moja global family 69

7.1
7.2
7.3
7.4

moja global Slack L e e e e 69
Technical Steering Committee Meetings v v v v i vttt e e e e 69
Outreach and Student Programs L e 70
moja global Outreach 70

moja global Technical Guide

moja global provides tools for estimating emissions and removals of greenhouse gases from the land sector.

FLINT: the Full Lands INtegration Tool The Full Lands Integration Tool (FLINT) is the flagship software developed
by the moja global community. It is an integrating platform for estimating land-based greenhouse gas emissions and
removals. Integrating refers to FLINT’s design to combine a wide range of data with models to achieve more accurate
estimates of stocks and fluxes of greenhouse gases. FLINT is consistent with the UNFCCC guidelines.

This Documentation is meant for Developers wishing to contribute to moja global repositories. If you would like to
get in touch with the maintainers for other reasons, please drop a mail at info@moja-global.com.

Contents 1

mailto:info@moja-global.com

moja global Technical Guide

2 Contents

CHAPTER 1

FLINT Prerequisites

Before we take a leap into the process of development, please take a moment to verify if you have the necessary tools
setup and skills to get started on this project. You should be familiar with the following :-

1.1 For Windows Based systems

Contents:

1.1.1 Setup Git

If you already have a Git client and Github account, please skip this section. Otherwise keep on reading!

Install and Configure Git

To install Git, please refer to the official git installation instructions here and the configuration recommendations here.
You can sign up for a Github account here.

After successful installation of Git and GitHub account registration, you can proceed with further instructions on how
to fork/clone the moja-global repositories here .

1.1.2 Cmake Installation

CMake is required to build the FLINT from its source code on Windows. CMake is an open-source family of tools
designed to build, test and package software.

* Please download and install Cmake from https://github.com/Kitware/CMake/releases/download/v3.15.2/
cmake-3.15.2-win64-x64.msi

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://github.com/join
https://github.com/Kitware/CMake/releases/download/v3.15.2/cmake-3.15.2-win64-x64.msi
https://github.com/Kitware/CMake/releases/download/v3.15.2/cmake-3.15.2-win64-x64.msi

moja global Technical Guide

1.1.3 Visual Studio Installation

Building FLINT requires a C++ compiler. On Windows, it is recommended to use the Visual Studio IDE which
includes a C++ compiler and several other useful tool. You can either install the Visual Studio 2019 or the Visual
Studio 2017 variant.

Please follow these steps for a smooth installation:

For Visual Studio 2019

* Navigate to https://visualstudio.microsoft.com/downloads/
* Select the community version download button.

* If you don’t have a Visual Studio Subscription, you can create one for free by clicking on “Create a new Mi-
crosoft account” on the login page.

* Follow the steps prompted by the installer.

For Visual Studio 2017

» Navigate to https://visualstudio.microsoft.com/vs/older-downloads/
» Expand the 2017 version and click on the download button.

e If you don’t have a Visual Studio Subscription, you can create one for free by clicking on “Create a new Mi-
crosoft account” on the login page.

Follow the steps prompted by the installer.

1.1.4 Vcpkg Installation

Finally, we need a C++ package manager to acquire and install third-party C++ libraries used by FLINT. Vcpkg
maintains a catalog of more than 1,900 libraries that have been tested against Visual Studio 2019 and 2017, and builds
these libraries during compilation to ensure compatibility with the FLINT source code. A fork of the original Vcpkg
package has been created under moja global for the FLINT required libraries.

To build the libraries please follow the following steps:
* Clone the Vcpkg repository: https://github.com/moja-global/vepkg

* Start a command shell in the Vcpkg repository folder and use the following commands:

bootstrap
bootstrap-vcpkg.bat

install packages

vcpkg.exe install boost-test:x64-windows boost-program-options:x64-windows boost-
—~log:x64-windows turtle:x64-windows zipper:x64-windows poco:x64-windows libpqg:x64-
—windows gdal:x64-windows sglite3:x64-windows boost-ublas:x64-windows

* Once this has completed, start a command shell in your FLINT repository folder. Now use the following
commands to create the Visual Studio solution:

4 Chapter 1. FLINT Prerequisites

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://github.com/moja-global/vcpkg

moja global Technical Guide

Create a build folder under the Source folder
cd Source

mkdir build

cd build

now create the Visual Studio Solution (2019)

cmake -G "Visual Studio 16 2019" -DCMAKE_INSTALL_PREFIX=C:/Development/Software/
—moja —-DVCPKG_TARGET_TRIPLET=x64-windows -DENABLE_TESTS=OFF -DENABLE_MOJA.MODULES.
. 7ZIPPER=OFF -DCMAKE_TOOLCHAIN_FILE=c:\Development\moja-
—global\vcpkg\scripts\buildsystems\vcpkg.cmake

OR Visual Studio Solution (2017)
cmake -G "Visual Studio 15 2017" —-DCMAKE_INSTALL_PREFIX=C:/Development/Software/
—moja —-DVCPKG_TARGET

A solution is simply a container used by Visual Studio to organize one or more,
—~related projects. When you open a solution in Visual Studio, it automatically loads
—all the projects that the solution contains.

1.2 For Linux Based systems

Contents:

1.2.1 Setup Docker (for Linux based variants only)

In-order to setup FLINT by using docker containers, please follow the instructions below based on your Linux Distro.

If your Linux distro is not listed below, please checkout the Docker official installation guides for more information:
* Install on CentOS

In order to setup the latest version of Docker on CentOS, checkout the official Docker installation guide for
CentOS .

¢ Install on Fedora

In order to setup the latest version of Docker on Fedora, checkout the official Docker installation guide for
Fedora .

¢ Install on Debian

In order to setup the latest version of Docker on Debian, checkout the official Docker installation guide for
Debian .

¢ Install on Ubuntu

In order to setup the latest version of Docker on Ubuntu, checkout the official Docker installation guide for
Ubuntu .

Test Docker version

Verify if the docker installation is successful by running the following command. If the following command does not
return the version of the docker, your installation has been unsuccessful, please try again.

docker —--version

1.2. For Linux Based systems 5

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/centos/
https://docs.docker.com/engine/install/centos/
https://docs.docker.com/engine/install/fedora/
https://docs.docker.com/engine/install/fedora/
https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

moja global Technical Guide

6 Chapter 1. FLINT Prerequisites

CHAPTER 2

FLINT Development Setup

This section guides first-time contributors through installing FLINT development environment on Windows and
Ubuntu.

The recommended method for installing the FLINT development environment is on Windows using cmake, vepkg and
Visual Studio 2017 or 2019. Inorder to setup FLINT on Linux based systems, Docker containers are preferred. This
method creates containers which are a simple way to build FLINT and all required dependencies.

Before Setting Up FLINT
* Please make sure that all the prerequisites required have been installed and configured correctly.
* The repository has been forked and cloned following the Git and Github guide here .

* It is highly recommended to first setup the FLINT.example repository to get an overview of how FLINT works
since the software might seem a bit complex at first sight. The instructions for setting up FLINT.example
repository can be found here.

Datasets for FLINT

After setting up FLINT, the next step can be to explore and run FLINT on different datasets. We have a collection of
publicly available Opensource datasets for you to choose from and run on FLINT here.

These datasets have been used by many countries and are effective in real-world scenarios. For each dataset informa-
tion is provided on content and license. Proper permissions have been cited for all the datasets and we urge you to
follow the license for every dataset before proceeding to work with it.

If you have another dataset on your mind that would be beneficial for FLINT, please feel free to reach out to us on
info@moja.global to share details about this dataset.

Working with Data

Contents:

git_and_github_guide.html
FLINT.example_installation.html
https://github.com/moja-global/Land_Sector_Datasets
mailto:info@moja.global

moja global Technical Guide

2.1 Git and Github guide

This guide is to help new contributors setup git, github and navigate their way through making contributions to moja
global repositories. It covers the entire process of contributing right from installing git to opening pull requests.

2.1.1 Setup this project using Git

Before setting up this project using Git make sure you have installed and configured git by following the instructions
here.

2.1.2 Fork and Clone this project
¢ In your browser, visit https://github.com/moja-global/FLINT. In the upper left corner, there is a Fork button.
Please click on it to create a fork/copy of the repository on your profile.

¢ In the terminal screen, clone this repo by running the command where your—username represents your
Github username.

’git clone https://github.com/<your-username>/FLINT/

* Enter into the newly created project folder by running the command

’ cd FLINT

* Configure upstream for the fork so that git can sync work from the upstream if it is updated by running the
command

’git remote add upstream https://github.com/moja-global/FLINT/

e Check if upstream is configured by running the command and check if upstream is shown or not.

’qit remote -v

* Now, the project is setup using Git. Please carry on with instructions on how to set this up on Windows or Linux
here. You can revisit this section when you are ready to make a contribution.

2.1.3 Claim an issue

This section will demonstrate how to claim an issue to work on using botmojaglobal.

To work on an issue, claim it by adding a comment with @botmojaglobal claim to the issue thread. botmo-
jaglobal is a GitHub workflow bot forked from the zulipbot; it will assign you to the issue and label the issue as in
progress. Some additional notes:

* You can only claim issues with the Good for newcomers or Help Wanted labels. botmojaglobal will
give you an error if you try to claim an issue without one of those labels.

* Please feel free to ask questions on how to approach the issue or if the tests are failing. The maintainers/reviewers
will try to get back to you as soon as possible. You can reach us on the moja-global slack, or through Github.

* If your pull request has some requested changes, after working on it don’t forget to leave a comment asking for
a review since the reviewers aren’t notified when a pull request is updated.

8 Chapter 2. FLINT Development Setup

https://support.atlassian.com/bitbucket-cloud/docs/install-and-set-up-git/
https://github.com/moja-global/FLINT
windows_installation.html
docker_installation.html
https://github.com/zulip/zulipbot/
https://mojaglobal.slack.com

moja global Technical Guide

2.1.4 Make a contribution

This section will show you step-by-step how to make a contribution to FLINT using git.

e FLINT stable branch is develop. Releases are scheduled periodically when codebase is production-ready and
develop is merged into master. develop branch is the latest updated branch and should be used as a base branch
for development. All pull requests should be against develop branch only. Make sure you are in the project
directory and checkout to develop branch with this command.

git checkout develop

* Choose an issue to work on. We have issues specifically labelled Good for newcomers and Help
Wanted for new contributors to claim. Before starting to work on any issue, make sure you have claimed
it.

¢ Create a new feature branch from develop branch to work on. The feature branch should have a short name that is
relevant to the issue that you will be working on. For example, if you are working on improving documentation
in the readme for adding a badge, the branch can be name add_badge_readmne.

’git checkout -b <feature-branch-name>

* Work on the task. Add tests and documentation for your changes if required. When you are done with your
changes, you can check all the files changes using the following command.

’qit status

¢ Add the relevant files and commit the changes. Please make sure that only those files required for this contribu-
tion are added. You can later modify your pull request to add other files as per your requirement.

’git add <file> <file>

e While committing the changes, make sure your commit message follows our commit-message guidelines men-
tioned here.

’git commit -m "relevant commit message"

* Make sure your fork is in sync with the latest changes of develop. For this rebase your branch against the latest
develop by following the commands below.

git checkout develop

git pull origin develop

git checkout <your-branch-name>
git rebase develop

* Incase there are any merge conflicts on running the rebase command, follow this guide to resolve them.

* You can now push your changes onto your feature branch using the command below.

git push origin <your-branch-name>

2.1.5 Create a pull request for your contribution

You can now create a pull request to get your changes merged into the upstream develop branch. Follow this step-by-
step guide to create a pull request on Github.

2.1. Git and Github guide 9

moja global Technical Guide

* Navigate to the pull requests tab under FLINT. Click on the New pull request button. Compare your feature
branch against the develop branch to create the pull request. Fill the pull request template by linking the issue
number solved.

¢ Incase your pull request is a work in progress, don’t forget to add “WIP” in the title of your pull request to let
the maintainers know that the pull request is not ready for review yet.

* Please be patient, someone from our team will review your pull request shortly and provide feedback. Incase
there are changes requested, you can follow the section below on how to update/modify your pull request.

* Also make sure that your pull request is in sync with the latest develop at all times.

NOTE: Don’t forget to get credits for your contributions once it gets merged by following this guide here.

2.1.6 Modify your pull request

Incase your pull request needs further changes, you can update your pull request by following the steps below.
* Checkout on your feature branch of the pull request.

¢ Add the changes as required and commit using the amend flag. This will update the last commit thus keeping
the commiit history clean and within a single commit.

git add <filel> <file2>
git commit -amend

* Push this onto your feature branch but this time with force flag. This will update the pull request automatically.
The reviewer won’t be notified about this updation, so leave a comment in your pull request if you want a review.

’qit push origin <your-branch-name> --force

2.2 Windows Installation

This section guides first-time contributors through installing FLINT development environment.

Before proceeding further, make sure you have setup the project using Git by following our guide Git and GitHub
Guide. Also make sure you have the following prerequisites setup -

2.2.1 Prerequisites

¢ Cmake
¢ Visual Studio
* Vcpkg

Now that you have all the necessary prerequisites, you can proceed with the Installation.

2.2.2 Using vcpkg to install required libraries

Start a command shell in the Vcpkg repository folder (that you had cloned earlier) and use the following commands:

10 Chapter 2. FLINT Development Setup

git_and_github_guide.html
git_and_github_guide.html
../prerequisites/cmake.html
../prerequisites/visual_studio.html
../prerequisites/vcpkg.html

moja global Technical Guide

bootstrap
bootstrap-vcpkg.bat

install packages

vcpkg.exe install boost-test:x64-windows boost-program-options:x64-windows boost-
—log:x64-windows turtle:x64-windows zipper:x64-windows poco:x64-windows libpqg:x64-
—windows gdal:x64-windows sglite3:x64-windows boost-ublas:x64-windows

ystem32\cmd.exe - vepkg.exe install boost-testx64-windows boost-prog..

boost-variant[core] : x64-windows Home e
* boost-vcpkg-helpers[core]: x64-windows
boost-winapi[core]:x64-windows - v 1~ B Development > moja-global
* boost-xpressive[core] : x64-windows
bzip2[core]: x64-windows
* cryptopp[core] -windows »# Quick access
curl[core,non-http,ssl,winssl]:x64-windows B vepkg 10-10-2020 17:21 File folder
* expat[core]:x64-windows OneDrive
gdal[core]:x64-windows
geos[core v M This PC
* hdfs[core 5 windows _
libiconv[core]:x64-windows W 3D Objects
* liblzma[cor 4-windows P Desktop
1ibpng[core] : x64-windows
libpqg[core,openssl,z1lib]: x64-windows R Documents
libwebp[core,nearlossless,simd,unicode] : x64-windows B Downloads
4-windows .
* netcdf-c[core] : x64-windows B Music
openjpi%[cor‘e] indow & Pictures
* openssl[core]: .
openss1-window iy window E: Videos
* pcre[core]:x i % Windows (C)
poco[core] : x64-window
0j4[core,database] window @ Network
T

View

Name Date modified Type

Starting package 1/112: cryptop vindows

Building package cryptopp[core] ndows. . .

A suitable version of powershell-core was not found (required v6.2.1). Downloading p

ortable powershell-core v6.2.1...

Downloading powershell-core. ..
https://github.com/Powershell/PowerShell/releases/download/v6.2.1/PowerShell-6.2.1

-win-x86.zip -> C:\Development\moja-global\vcpkg\downloads\PowerShell-6.2.1-win-x86.

zip

Titem |

AT NS Owm O WH W ENG

10-10-2020

Fig. 1: Installing required packages using vcpkg in Command Prompt

2.2.3 Using cmake to build the project

Note: Please make sure that you have checked out to the Develop Branch for the FLINT Installation. You may
refer to our Git and GitHub Guide for instructions on how to switch to develop branch.

Once this has completed, start a command shell in your FLINT repository folder. Now use the following commands
to create the Visual Studio solution:

—~
Q.
0)
N

Create a build folder under the Source fo
cd Source

mkdir build

cd build

from ..\moja\FLINT\source\build

now create the Visual Studio Solution (2019)

cmake -G "Visual Studio 16 2019" -DCMAKE_INSTALL_PREFIX=..\..\.. -DVCPKG_TARGET_
—TRIPLET=x64-windows -DENABLE_TESTS=OFF -DENABLE_MOJA.MODULES.ZIPPER=OFF -DCMAKE_
—TOOLCHAIN_FILE=..\..\..\vcpkg\scripts\buildsystems\vcpkg.cmake

(continues on next page)

2.2. Windows Installation 11

git_and_github_guide.html#make-a-contribution

moja global Technical Guide

(continued from previous page)

OR Visual Studio Solution (2017)

cmake -G "Visual Studio 15 2017" -DCMAKE_INSTALL_PREFIX=..\..\.. -DVCPKG_TARGET_
—TRIPLET=x64-windows -DENABLE_TESTS=OFF -DENABLE_MOJA.MODULES.ZIPPER=OFF -DCMAKE_
—TOOLCHAIN_FILE=..\..\..\vcpkg\scripts\buildsystems\vcpkg.cmake

Note: All paths used below with C:\Development\moja-global will need to be modified to match your
system build location of the moja project.

2.2.4 Running the project

ALL_BUILD Property Pages ? X
Configuration: Active(Debug) ~ | Platform: | Active(x64) v Configuration Manager...
4 Configuration Properties Debugger to launch: "

General

Local Windows Debugger .
Advanced freE Bes

3
VCH-‘,eO,ieS Command C:\Development\moja-global\FLINT\Source\build\bin\$ (Configuration)\moja.cli.exe

b T B Command Arguments --config config\point_example.json --config config\$(Configuration)\libs.base.win.json --logging_config logg

b G b el Working Directory $(SolutionDin\..\..\Run_Env
Attach No
Debugger Type Auto
Environment PATH=C: ja-global\vepkg\installed indows\debug\bin:C:\Devel ja-global\l
Merge Environment Yes
SQL Debugging No
Amp Default Accelerator WARP software accelerator

Command
The debug command to execute.

o | [

17:58

N B 7z N ™) ENG
Gl ! S 010200

Fig. 2: Running moja.cli.exe in Visual Studio Debugging All properties page

We are running the moja.cli.exe from the moja.FLINT project here. In order to make edits to the Visual Studio
Solution we can use the CMake GUI.

2.2.5 Edit solution using CMake GUI

¢ Launch the CMake GUI

e In the Where to build the binaries field click Browse Build. .. and select the folder you cre-
ated above (i.e. C:\Development\moja-global\FLINT\Source\build). The Where is the
source code: field should update, if not, set it correctly.

* You should be able to edit any CMake setting now (i.e. ENABLE flags like ENABLE_TESTS), then click
Configure — assuming all libraries and required software has been installed you should have no errors. Now
click Generate and the Solution with adjustments should be ready to load into Visual Studio.

12 Chapter 2. FLINT Development Setup

moja global Technical Guide

2.3 Docker Installation (for Mac and Linux Variants)

This section guides first-time contributors through installing FLINT development environment through Docker on Mac
and Linux systems.

Before proceeding further, make sure you have setup the project using Git by following our Git and GitHub Guide.
Also make sure you have the following prerequisites setup -

2.3.1 Prerequisites

¢ Docker

Now that you have all the necessary prerequisites, you can proceed with the Installation.

2.3.2 Setup Docker Container

Containers are a simple way to build FLINT and all required dependencies.

Note: Before setting up, it is recommended to install the FLINT.example repository first.

2.3.3 Building using prebuilt image

Instead of building the required libraries, pre-built Docker Image is available for FLINT at our Dockerhub . You can
pull and run FLINT using this prebuilt image using the following commands.

pull the image

docker pull mojaglobal/flint

run a container

docker run —-rm -ti mojaglobal/flint:latest bash
run CLT

moja.cli --help

Alternatively, you can build the libraries by Building using the second option below.

2.3.4 Building the containers

Note: Please make sure that you have checked out to the Develop Branch for the FLINT Installation. You may
refer to our Git and GitHub Guide for instructions on how to switch to develop branch.

The build has been split into two Dockerfiles, the first to get and build required libraries. The second to get and build
the moja FLINT libraries and CLI program.

working from the Docker folder "flint/tree/develop/Docker"

build the base
docker build -f Dockerfile.base.ubuntu.18.04 --build-arg NUM_CPU=4 -t moja/
—baseimage:ubuntu-18.04

2.3. Docker Installation (for Mac and Linux Variants) 13

git_and_github_guide.html
../prerequisites/docker.html
FLINT.example_installation.html
https://hub.docker.com/r/mojaglobal/flint
git_and_github_guide.html#make-a-contribution

moja global Technical Guide

/FLINT$ cd Docker

:~/FLINT/Docker$ docker build -f Dockerfile.base.ubuntu.18.04 --build-arg NUM_CPU=4 -t moja/baseimage:ubuntu-18.04

Fending build context to Docker daemon 21.5kB

Ftep 1/33 : FROM ubuntu@sha256:9b1702dcfe32c873a770a32cfd306dd7fclc4fd1i34adfb783db68defc8894b3c
sha256:9b1702dcfe32c873a770a32cfd306dd7fclc4fd134adfb783db68defc8894b3c: Pulling from library/ubuntu

Fb7339215d1d: Already exists
2: Already exists

: Already exists
h054a26005b7: Already exists

pigest: sha256:9b1702dcfe32c873a770a32cfd306dd7fclcifd134adfb783dbesdefc8894b3c

Ftatus: Downloaded newer image for ubuntu@sha256:9b1702dcfe32c873a770a32cfd306dd7fcic4fdi34adfb783db68defc8894b3c

---> 4¢108a37151f

tep 2/33 : LABEL maintainer="infoamoja.global"

---> Running in 7419eddsd61d
Removing intermediate container 7419edd5d61d
---> 31d318594518

Step 3/33 : ARG DEBIAN_FRONTEND=noninteractive

===> Running in 512167fc2fb2

Removing intermediate container 512167fc2fb2
---> bel1780e9d23b

Etep 4/33 : ENV ROOTDIR /usr/local

---> Running in ak4ael3cbac81

Removing intermediate container a4ael3cbac81
---> of8al52b6cla

Step 5/33 : ENV GDAL_VERSION 2.4.1

---> Running in 5594e7a7792e

Removing intermediate container 5594e7a7792e
---> 43828d3871cc

tep 6/33 : ENV CMAKE_VERSION 3.15.0

---> Running in fa77c28a731e

Removing intermediate container fa77c28a731e
---> 40bbdcsa1d39

tep 7/33 : ENV POCO_VERSION 1.9.2

---> Running in beld628e82c4

Removing intermediate container beld628e82ci4
---> 46a07e7084f9

ktep 8/33 : ENV BOOST_VERSION 1_72_0

---> Running in 1d6854e333fa

Removing intermediate container 1d6854e333fa
---> 677efa8822c5

tep 9/33 : ENV BOOST_VERSION_DOT 1.72.0
==-=> Running in 9013e6842e3f

Removing intermediate container 9013e6842e3f
---> b5f3fdibd472

Etep 10/33 : ENV FMT_VERSION 6.1.2

Fig. 3: Building the base libraries using Docker

14

Chapter 2. FLINT Development Setup

moja global Technical Guide

build the flint container
docker build -f Dockerfile.flint.ubuntu.18.04 --build-arg NUM_CPU=4 --build-arg,,
—FLINT_BRANCH=develop -t moja/flint:ubuntu-18.04

docker build -f Dockerfile.flint.ubuntu.18.04 --build-arg NUM_CPU=4 --build-arg,,
—+GITHUB_AT=XXXX --build-arg FLINT_BRANCH=develop -t moja/flint:ubuntu-18.04

:~/FLINT/Docker$ docker build -f Dockerfile.flint.ubuntu.18.04 —-build-arg NUM_CPU=4 —-build-arg FLINT_BRANCH=develop -t moja/flint:ubuntu-18.04 .
Sending build context to Docker daemon 21.5kB
Step 1/28 : FROM moja/baseimage:ubuntu-18.04
---> 80602a009ffb
Step 2/28 : LABEL maintainer="infogmoja.global"”
---> Using cache
--=> d5c56e8ecbb7
Step 3/28 : ARG FLINT_BRANCH
---> Using cache
---> el549e82bdd2
Step 4/28 : ARG NUM_CPU=1
---> Using cache
---> 9cf29dd3c2fc
step 5/28 : ARG DEBIAN_FRONTEND=noninteractive
---> Using cache
---> 27e3cf28b817
IStep 6/28 : ENV ZIPPER_VERSION 1.0.1
---> Using cache
---> 05794f3d17d3
Step 7/28 : ENV ROOTDIR /usr/local
---> Using cache
---> 1d1a0lc6ef64
Step 8/28 : WORKDIR $ROOTDIR/src
-==> Using cache
-==> a26699a1185f
9/28 : ENV PATH $ROOTDIR/bin:$PATH
> Using cache
> aa5e29a8cf66
10/28 : ENV LD_LIBRARY_PATH $ROOTDIR/Lib:$ROOTDIR/Lib/x86_64-Llinux-gnu:$LD_LIBRARY_PATH
> Using cache
> 192d8e3fage7
11/28 : ENV PYTHONPATH $ROOTDIR/lib:$PYTHONPATH
> Using cache
> ccdb888c91b7
12/28 : ENV CURL_CA_BUNDLE /etc/ssl/certs/ca-certificates.crt
> Using cache
> 5c1429c01db6
13/28 : ENV GDAL_DATA=/usr/local/share/gdal
> Using cache
> 3d91460fcfob
14/28 : ENV GDAL_HTTP_VERSION 2
> Using cache
> cod5e9ed65b6
Step 15/28 : ENV GDAL_HTTP_MERGE_CONSECUTIVE_RANGES YES
---> Using cache

Fig. 4: Building the FLINT libraries using Docker

How to use the final container depends on the task. However, the following command will bash into the flint container
and allow you to use the CLI program.

run bash on the flint container
docker run —-rm -ti moja/flint:ubuntu-18.04 bash

Once in, you should be able to run the CLI program moja.cli

run CLIT
moja.cli —-help

That should respond with the following options:

2.3.5 Allowed options

General options:

~h [—~help] produce a help message
—-help-section arg produce a help message for a named section
-v [——-version] output the version number

Commandline only options:

(continues on next page)

2.3. Docker Installation (for Mac and Linux Variants) 15

moja global Technical Guide

Successfully tagged moja/flint:ubuntu-18.04

:~/FLINT/Docker$ docker run --rm -ti moja/flint:ubuntu-18.04 bash
mojafb29c9c3cdo8e:~% moja.cli --help
Allowed options:

General options:
-h [--help] produce a help message
--help-section arg produce a help message for a named section
-v [—--version] output the version number

Commandline only options:
--logging_config arg path Moja logging config file
--config_file arg path Moja run config file
--provider_file arg path Moja data provider config file

Configuration file options:

--config arg path Moja project config files

--config_provider arg path Moja project config files for data providers
mojagb29c9c3cdose:~$ ||

Fig. 5: Running moja.cli using Docker

(continued from previous page)

--logging_config arg path to Moja logging config file
—-—config_file arg path to Moja run config file
—--provider_file arg path to Moja data provider config file

Configuration file options:
--config arg path to Moja project config files
—-—config_provider arg path to Moja project config files for data providers

2.4 FLINT.example

The FLINT.example gives an example of how to build and run libraries using the FLINT framework. It is recom-
mended to set up FLINT.example repository before setting up FLINT in order to get a better idea of how FLINT
works.

The Docker file used here can be found in the Dockerfile file at the root of the repository. This Docker file builds
from the image mojaglobal/flint :bionic which can be found in docker hub.

There are 3 different environemnts listed in this document to build and run the examples:
* Windows - Visual Studio 2019: develop, run and debug
* Visual Studio Code: develop, run and debug
* Docker: run only
We currently have four different sample runs:
¢ Test Module sample - Point level
* RothC sample - Point level
¢ Chapman richards - Point sample
* Chapman richards - Spatial sample

The FLINT.example repository is available here under the moja global organisation on GitHub. Before proceeding to
the instuctions for installing FLINT.example, please follow the following steps to clone this repository on your fork:

16 Chapter 2. FLINT Development Setup

https://github.com/moja-global/FLINT.Example

moja global Technical Guide

git clone https://github.com/<your-username>/FLINT.example.git

For more instructions on our GitHub fork, clone and pull request practices, refer our Git and GitHub Guide.

Contents:

2.4.1 Environment: Visual Studio

In the Visual Studio environment option for setting up FLINT.example, the options to run, develop and debug the
repository code is available. Also make sure you have the following prerequisites setup -

Prerequisites

¢ Cmake
¢ Visual Studio
¢ Docker

Now that you have all the necessary prerequisites, you can proceed with the Installation.

Using vcpkg to install required libraries

Start a command shell in the Vcpkg repository folder (that you had cloned earlier) and use the following commands:

bootstrap
bootstrap-vcpkg.bat

install packages

vcpkg.exe install boost-test:x64-windows boost-program-options:x64-windows boost-
—~log:x64-windows turtle:x64-windows zipper:x64-windows poco:x64-windows libpqg:x64-
—windows gdal:x64-windows sqglite3:x64-windows boost-ublas:x64-windows fmt:x64-windows

Building the project

Launch the Windows Powershell and run the following commands:

Create a build folder under the Source folder
mkdir -p Source\build
cd Source\build

Now depending on which type of simulation you want to execute, you may run one of the following generate com-
mands:

Commands to run cmake for the point simulations:

Point simulations

Generate the project files

cmake -G "Visual Studio 16 2019" -DCMAKE_INSTALL_PREFIX=C:\Development\Software\moja —
—DVCPKG_TARGET_TRIPLET=x64-windows —-DOPENSSL_ROOT_DIR=c:\Development\moja-
—+global\vcpkg\installed\x64-windows -DENABLE_TESTS=OFF -DCMAKE_TOOLCHAIN_
—FILE=c:\Development\moja-global\vcpkg\scripts\buildsystems\vcpkg.cmake

Commands to run cmake for the spatial simulations:

2.4. FLINT.example 17

git_and_github_guide.html
../prerequisites/cmake.html
../prerequisites/visual_studio.html
../prerequisites/docker.html

moja global Technical Guide

windows\system32\cmd.exe - vepkg.exe install boost-test:x64-windows boost-prog | B = | moja-glot

boost-variant[core] : x64-windows File Home Share View
boost-vcpkg-helpers[core] : x64-windows
boost-winapi[core]:x64-windows « > v i Development > moja-global
boost-xpressive[core] :x64-windows
bzip2[core] :x64-wind Name Date modifie Type
cryptopp[core]: # Quick access
curl[core,non-http,ssl,winssl]:x64-windows R 10-1 01721 File folder
expat[core] :x64-windows & OneDrive
gdal[core] : x64-windows
geos[core] : x64-windows = This PC
hdf5[core,szip,z1ib] :x64-windows .
1ibiconv[core] : x64-windows W 3D Objects
liblzma[core] : x64-windows I Desktop
1libpng[core] : x64-window
libpg[core,openssl,zlib]:x64-windows
libwebp[core,nearlossless,simd,unicode] : x64-windows B Downloads
1ibxml2[core]:)
netcdf-c[core] B Music
openjpeg[core] :> indow I Pictures
openssl[core]:x6)
openss1-windows[core] : x64-windows E: Videos
pcre[core] : x64-windows % Windows (C)
poco[core] : x64-windows
proj4[core,database] : x64-windows @ Network
sqlite3[core,tool]:x64-windows
:x64-windows
x64-windows
indows
ndows
64-windows
ill be modified to complete this operation.
Starting package 1/112: cryptopp:x64-windows
Building package cryptopp[core]:x64-windows. ..
JA suitable version of powershell-core was not found (required v6.2.1). Downloading p
ortable powershell-core v6.2.1.
Downloading powershell-core...
https://github.com/PowerShell/PowerShell/releases/download/v6.2.1/Powershell-6
n-x86.zip -> C:\Development\moja-global\vcpkg\downloads\Powershell-6.2.1-win-

& Documents

1item |

‘ 4KBfs N -
9 D 311KB/s <) 10-10-2020

Fig. 6: Installing required packages using vcpkg in Command Prompt

C\windows\system32\cmd.exe

File Home e View
C: \Development\moja-global\vcpkg>cd ..

< —> v 2 B FLUNTEample > Source
C: \Development\moja-global>git clone https://github.com/moja-global/FLINT.Example.gi
It
Cloning into 'FLINT.Example'...
remote: Enumerating objects: 62, done.
remote: Counting objects: 100% (62/62), done. & OneDrive
remote: Compressing objects: 108% (47/47), done.
remote: Total 415 (delta 14), reused 45 (delta 5), pack-reused 353 eceiving object This PC
Receiving objects: 10e% (415/415), 1.43 MiB | 1.33 MiB/s, done.
Resolving deltas: 100% (163/163), done.

Name Date modified Type
»* Quick access
build 10-10-2020 17:24 File folder
cmake 2 File folder
moja flint.example base 7 File folder

W 30 Objects mojafint.example.rothc File folder

P Desktop -)
C: \Development\moja-global>cd FLINT.Example templates E File folder

B Documents
C: \Development\moja-global\FLINT.Example>mkdir -p Source\build B Downloads

clang-format 10-10-2020 17:24 CLANG-
cmake_uninstall.cmake.in 0-2020 17:24 IN File

CMakelists 0-2020 17:24 Text Docur)

n
n
n
n
B moja.modules.chapman _richards 2 File folder
n
| |
|
B

B Music
B Pictures
B Videos

C: \Development\moja-global\FLINT.Example>cd Source\build,

4 Windows (C)

@ Network

B 4 ene

17:
10-10-2020

Fig. 7: Creating a build Directory for Cloned FLINT.example repo

18 Chapter 2. FLINT Development Setup

moja global Technical Guide

Spatial simulations

1f your planning to run spatial chapman richards example you also need to enable_,
—the gdal module

Generate the project files

cmake -G "Visual Studio 16 2019" -DCMAKE_INSTALL_PREFIX=C:\Development\Software\moja -
—DVCPKG_TARGET_TRIPLET=x64-windows —DOPENSSL_ROOT_DIR=c:\Development\moja-
—~global\vcpkg\installed\x64-windows -DENABLE_TESTS=OFF -DENABLE_MOJA.MODULES.GDAL=0ON,
——~DCMAKE_TOOLCHAIN_FILE=c:\Development\moja-global\vcpkg\scripts\buildsystems\vcpkg.
—cmake

Running the project

In order to run and debug the Visual Studio solution -

* Open the visual studio solution that CMake created at C : \Development \moja-global\FLINT\Source\build\moja.
sln

* Build the debug configuration ALL_BUILD target by right clicking the ALL_BUILD node and selecting Build.

w File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Se

B2 W Debug ~ x64 * P Local Windows Debugger = Auto
Solution Explorer v 0 X
Q- o-5aB| p=
Search Solution Explorer (Ctrl+;) P~

=f3] Solution 'moja’ (11 of 11 projects)
4 CMakePredefinedTargets
b =[%] ALL BUILD

P =[] INSTALL

b =[] PACKAGE

b =[%] ZERO CHECK

o[%] dist

=% moja.dli

=[] moja.core

=[%] moja.datarepository
=& moja.flint

=[] moja.flint.configuration
=[%] uninstall

v Y Y TV VN

Fig. 8: Navigating to Visual Studio Debugging ALL_BUILD properties page
Running in the IDE and debugging is a little tricky. This could more than likely be resolved with better cmake setups.
But for now there is some setup that can make running and debugging work.

The issue is we want to run with the moja.cli.exe from the moja.FLINT project, but debug in our current IDE
(FLINT.example).

The solution is to use properties to setup a Debug run in the IDE, making the command run moja.cli.exe.

NOTE : All paths used below with C:\Development\moja—-global will need to be modified to match your
system build location of the moja project.

2.4. FLINT.example 19

moja global Technical Guide

ALL_BUILD Property Pages ? X
Configuration: | Active(Debug) ~ | Platform: Active(x64) v | Configuration Manager...
4 Configuration Properties Debugger to launch: <
General
enerd Local Windows Debugger v
Advanced
Debugging 1
VC++ Directories Command C:\Devel ja-global\FLINT\ build\bin\$ (Configurati ja.cli.exe
» Build Events Command Arguments --config config\point_example.json --config config\$(Configuration)\libs.base.win.json --logging_config logg
b Custom Build Tool Working Directory $(SolutionDir)\..\..\Run_Env
Attach No
Debugger Type Auto
Environment PATH=C3 ja-g pkg\installed indows\debug\bin;C:\Devel ja-global\l
Merge Environment Yes
SQL Debugging No
Amp Default Accelerator WARP software accelerator
<
Command
The debug command to execute.

2 17:58
7 Ty O M J) ENG
6 DD W) 10102020

Fig. 9: Running moja.cli.exe in Visual Studio Debugging All properties page

Test Module Example

The settings required in VS2019 are:

Command
C:\Development\moja-global\FLINT\Source\build\bin\$ (Configuration)\moja.cli.exe

Command Args
--config config\point_example.json —--config config\$ (Configuration)\libs.base.win.
—~Jjson --logging_config logging.debug_on.conf

Working Directory
$(SolutionDir)\..\..\Run_Env

Environment Debug
PATH=C:\Development\moja—-global\vcpkg\installed\x64-windows\debug\bin;
—C:\Development\moja-global\FLINT\Source\build\bin\$ (Configuration) ; $PATH%
LOCAL_LIBS=$ (OutDir)
MOJA_LIBS=C:\Development\moja-global\FLINT\Source\build\bin\$ (Configuration)

Environment Release
PATH=C:\Development\moja-global\vcpkg\installed\x64-windows\bin; C:\Development\moja-
—global\FLINT\Source\build\bin\$ (Configuration) ; $PATHS

LOCAL_LIBS=$ (OutDir)
MOJA_LIBS=C:\Development\moja-global\FLINT\Source\build\bin\$ (Configuration)

With Envs: PATH for various libraries built in the Moja stage and LOCAL_LIBS so we can modify the explicit path
for our example config to load libraries from this vs build (the default is the same location as the EXE).

To match this, the example point config uses an environment variable in the library path:

20 Chapter 2. FLINT Development Setup

moja global Technical Guide

{
"Libraries": {
"moja.flint.example.base": ({
"library": "moja.flint.example.based.dll",
"path": "$LOCAL_LIBSS",
"type": "external"
}
}
}

RothC example

We also have a RothC example for point level simulations. Inorder to run this example, you may modify the following
arguments in the above test settings command arguments. These arguments will point at the right configuration files
for RothC. Please follow the following steps to set the correct configuration -

* Build the debug configuration ALL_BUILD target by right clicking the ALL_BUILD node and selecting Build.
Then right click the the moja.flint.example.rothc node and select Set as Startup Project
then right click again and select properties. Navigate to Configuration Properties/Debugging properties
pane and configure the following:

— Command: C:\Development\moja-global\FLINT\Source\build\bin\Debug\moja.
cli.exe

— Command Arguments:

-—config config\point_example.json —--config config\debug\libs.base.win. json ——
—~logging_config logging.debug_on.conf

— Working Directory: $ (SolutionDir) ..\..\Run_Env

— Environment:

PATH=C:\Development\moja-global\FLINT\Source\build\bin\Debug; $PATHS LOCAL_
—LIBS=C:\Development\moja-global\FLINT.Example\Source\build\bin\Debug

moja.flint.example.rothc Property Pages

Configuration: |Debug v | Platform: |x64 ~ | Configuration Manager...
4 Configuration Properties Debugger to launch:
General -
et Local Windows Debugger -
vance
Debugging 1
VC++ Directories Command (&) ja-global\FLINT\! ild\bi i cli.exe
b C/Chs Command Arguments --config config\point_example.json --config config\debug\libs.base.winjson --logging_config logging.debug_on.conf
Silinker: Working Directory $(SolutionDir)..\..\Run_Env
b Manifest Tool Attach No
b XML Document Generator Debugger Type Auto
» Browse Information Exsiongens PATH=C:\D ja-global\FLINT\ ild\bin\Debug:%PATH%LOCAL LIBS=C: ja-global\FLINT. iid\sin\Dekiug
S Bl Evers Merge Environment ~ Yes
SQL Debugging No

b Custom Build Step
b Custom Build Tool
b Code Analysis

Amp Default Accelerator WARP software accelerator

Working Directory
The application’s working directory. By default, the directory containing the project file.

Fig. 10: ALL_BUILD properties page for moja.FLINT.example.rothc

2.4. FLINT.example 21

moja global Technical Guide

You should now be able to select Debug->Start Debugging to start a debug run of the RothC example. You
should see something like the following:

Enable moja.modules.GDAL

Before moving on to setting up the Chapman Richards model, we need to enable the moja.modules.GDAL flags. We
can toggle these flags by clicking on BROWSE BUILD and setting it to the build directory where we just built the
solution.

* Open the solution that CMake created at C : \Development \moja-global \FLINT\Source\build\moja.
sln.

* Check the following Flags present:

« ENABLE_MOJA.MODULES.GDAL

« ENABLE_MOJA.MODULES.LIBPQ

¢« ENABLE_MOJA.MODULES.POCO

« ENABLE_MOJA.MODULES.ZIPPER

* Now, Click on Configure option twice.

* Click on Generate and then you may explore all the enabled modules in Solution Explorer by clicking on
Open Project.

* Open CMakePredefinedTargets, right click on ALL_BUILD and click on Build

Viola! All libraries have been enabled You may now proceed with the Chapman Richards example!

Chapman Richards example

Based on the moja global repository Chapman Richards , this sample can be run on both point and spatial versions
(over Dominica). Inorder to run this example, you may modify the following arguments in the above test settings
command arguments. These arguments will point at the right configuration files for Chapman Richards.

Command Args

Point

—-—-config config/point_forest_config.json —--config config/$ (Configuration)/libs.gdal.
—chaprich.win. json

Spatial

—-—-config config/forest_config.json —--config config/$ (Configuration)/libs.gdal.
—chaprich.win. json --config_provider config/forest_provider. json

2.4.2 Environment: Visual Studio (Remote Containers)
In the Visual Studio environment using Remote Containers option for setting up FLINT.example, the options to run,

develop and debug the repository code is available. Here remote containers are available in Visual Studio as an
extension and can be installed with the help of the link mentioned in the prerequisites section.

Prerequisites

¢ Visual Studio

¢ Remote - Container (VS Extension)

22 Chapter 2. FLINT Development Setup

https://github.com/moja-global/FLINT.chapman_richards
../prerequisites/visual_studio.html
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

moja global Technical Guide

Microsoft Visual Studio Debug Console

<2020-10-19 11

<2020-10-19 11:

<2020-10-19 11:

<2020-10-19 11:

<2020- 10 19 11
ik

6, filename
<2020—10—19
<2020-10-19

<2020-10-19
“0‘0 10-19

<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19
<2020-10-19

<2020-10-19
<L0 0-10-19

[
Tename —moja F11nt examp1e based.dT1
:00:27

i27.

<2020-10-19
<2020-10-19 11
0

<2020-10-19 11
<2020-10-19 11
<2020-10-19 11
<2020-10-19 11:
<2020-10-19 11:
<2020-10-19 11
<2020-10-19 11
<2020-10-19 11
<2020-10-19 11
<2020-10-19

outputerstream

24.88

3380>
886497>

24.887497>

.887497>
-887497>

4.898497>
filename -moja.flint examp1e based.dT1
.899497> (debug) - moja:

f11nt example.based.d11

24.909497>

24,

24,

910511>
911499>
912497>

.912497>

912497>
.913497>
.914507>
.914507>
.915497>
.915497>
.915497>
.917497>

4.917497>

.918498>
.920658>
.922658>
.923658>
.923658>
.932658>
.935658>

4.936658>

.936658>
.937658>
938660>

"':9sseeo>
24.940662>

27

27.

.944661>
.121485>

3484>
1434845

.144484>
145481>

27.145481>

.146483>
.149536>
.156736>
.156736>

7.157736>

.157736>

27.158735>
egat1veTransfers[0FF])

(info)
(info)
(info)
(info)
(info)
(debug

Config h

as file

- Using Logging conf1gurat1on Togging.debug_on.conf
- Using configurations:

- config\point_example.json

- config\debug\1ibs.base.win.json

) - moj

Tint:

Tint:

:configurati :JSON2ConfigurationProvider::createLibraries(434) - details (moja.flint.example.base):

:configuration::configuration::addLibrary(105) - details (moja.flint.example.base): path - %LOCAL_LIBS

(info) - Using operat1on manager:
j

(debug

(debug
(debug
(debug

(debug
(debug

(info)
(info)
(1nfo)

(info)
(info)
(info)
(info)
(info)
(info)
(info)

)

)
)]
)

)
)

ibraryManager::LibraryManager (46) - Libr Manager: contructor no args
ibraryManager::LoadInternalLibrary(427) - LibraryMLoadInternalLibraryanager: entered

ibraryManager::LoadInternalLibrary(431) - LibraryMLoadInternalLibraryanager: calling AddLibrary :

ibraryManager::AddLibrary(78) - AddLibrary: entered : internal.flint

ibrarymanager 0 e y(441) - LibraryMLoadInternalLibraryanager: calling registrations

getFlintModuleRegistrations
etFlintModuleRegistrations (166) - getFlintModuleRegistrations:
etFlintTransformRegistrations(171) - getF11ntTransformReg1strat1ons
etFlintTransformRegistrations(194) - getFlintTransformRegistrations:
etFlintFlintDataRegistrations(199) - getFlintFlintDataRegistrations

: entered

etFlintFlintDataFactoryRegistrations(230) - getFlintFlintDataFactoryRegistrations: exit - 1
etProviderRegistrations(235) - getProviderRegistrations: entered
etProviderRegistrations(250) - getProviderRegistrations: exit - 2

RegisterProviders(407) - RegisterProviders: entered : internal.flint : count 2

RegisterProviders(411) - RegisterProviders: loop: 0

RegisterProviders (416) - RegisterProviders: loop: internal.flint : RasterTiled

RegisterProviders(411) - RegisterProviders: loop:

Reg1sterProv1ders(416) RegisterProviders: loop: internal.flint : sQLite
etProviderRegistrations(235) - getProviderRegistrations: entered
etProviderRegistrations(250) - getFrov1derReg1strat1ons exit - 2
ibraryManager::RegisterProviders(407) - RegisterProviders: entered : internal.flint : count 2

RegisterProviders (411) RegisterProviders: loop

RegisterProviders(416) - RegisterProviders: internal.flint : RasterTiled

RegisterProviders (411) - RegisterProviders: 1

RegisterProviders(416) - RegisterProviders 00 internal.flint : sQLite

P
:LocalpomainControllerBase::configure(71) - details (moja. f11nt example.base): path %LOCAL_LIB:

::LibraryManager::AddLibrary(78) - AddLibrary: entered : moja.flint.example.base
iiLibraryManager::RegisterProviders(407) - RegisterProviders: entered : moja.flint.example.base :

int
int
int
int
int
int
int
: moj
LEVEL

erna1.f1int, module name: CalendarSequencer

ernal.flint, module name: OutputerStream

ernal.flint, module name: OutputerStreamFlux

ernal.flint, module name: TestModulel

ernal.flint, module nam TestModule2

ernal.flint, module name: TestModule3

ernal.flint, module name: Transact1onManagerEnd0fstepModu1e
a.flint.example.base, module name: Errorscreenwrite

in

count

ger: Simple, Version: 1.0, Config: (Kahan[OFF], ZeroTransfers[oFF], AllowNegativeTransfers [ON], WarnN

hotification,step,stepDate,fracofStep,stepLenInyears,Pool 1 Poo1 2,Pool

onT1m1ngFostIn1t 0 1919-11-30:23:59:
onoutputsStep,1, 19.0 01-3 5
onoutputStep,2,1920-02-2
onoutputstep,3,1920—0“—3
onOutputStep,4,1920-04-3
lonoutputStep,5,1920-05-3
lonoutputStep,6,1920-06-3
lonOutputStep,7,1920-07-3
lonoutputStep,8,1920-08-3
lonoutputstep,9,1920-09-3
lonOutputStep,10,1920-10-31
lonoutputstep,11,1920-11-30
onoutputStep,12,1920-12-31
lonOutputStep,13,1921-01-31
onoutputstep,14,1921 02-2

lonoutputStep, 4: 1923-07-31

R 1 R R0 1O R 10 R0 R

101 1D 10 R 1 1R D 1R R 10 IR D 1O R 1 R R0 1R R 10 R0 R T D R R 1 1R) 1R R 1O
0013 L2 U2 U L) U3 L0 9 U3 02 U0 L3 U U 60 G 03 U0 00 103 U U2 U L0 L0 G L) U3 L0 U3 U0 W) U

5
9.999999,1

S, 999999,

)
1999999,1,0.

1999999.1,0.

1999999170,
1999999,1,0.
1999999.1,0.
.999999,1,0.

0,10

1,
0.084639

079234
084699
081967
084699

0819672

084699
.084699.
08196/
.08469
.08196
.08469
.08493

0.07671

.08493
.08219
.08493

0.08219

1999999,1,0.

.999999,1,0.08

+999999.1,0.
999999,1,

1999999,1,0.
199999910,

.999999,1,0

1999999,1,0.

199999910,
1999999,1,0.
19999991
1999999,1,0.
19999991,

19999991

£999999,1,0.
1999999.1,0.
1999999170,
1999999,1,0

1999999,1,0.
1999999,1,0.

1999999 0.
.999999,1,0.
.999999,1,0.

.08493
08493

08493
08219
08493
08493
07671
08493
08219
08493

0.08219

08493

0.08493
.999999,1,0.082

.08493
08219
08493
08493
076712
08493
08219
08493
08219
08493

2191

1971

0 100
45355191“6 119,80,101,
9726775956,114.79,114.7,70.51,
4535519126,70.62 9 91.877,137.5001,
2131147541,183.688 79,45.87127,70.4404510000001,
4535519126,49.849/88“900001,215 8591277, 34.2910840099999,
131147541,36.1387786878999,-43.1248390729998 306. 9860603851,
4535519126,446.567596367429,68.5428318307697,-215.110428198199,
4535519126,-454.484816925545,546.266459362273, 203 218357563272,
L13114/541 446 590/9/8469:9 863, 963491684344 ,7 37269383 406,
9453551 807 446:653 1012.54978304319, -1647 45785750685,
/21:114 7 1846300 43, 709 105605“81153,2326 07902474314,
945:55191“6 4“86 41313587457,-3910.292821672 16,-76 0:14“0“4096
15068493151,-1399. >4320892396 75271 48:48/4/:02,-53 14027854906,
23287671233,-8264.12605236091,-5582.88791533766 1414/.0139676986,
15068493151,23558.2886275792,-7951.91991040035,-15306. 3687171788,
17808219178, -“987: 9759/68702,34601 735171053 427.75919418292,
15068493151,2364.83159372849,-56137.0363554577,54072.2047617292,
17808219178, 79858. 135616858, 31142.,7992495759,-110700.934866434,
15068493151, -188901.833636044,88244.1766771275,100957 .656958917 ,
15068493151,20/097 458959599,-289694. 4/20654‘1 82897. 01“1058222,
7808219178,61387.3118397954,414073.93268018' ,—475161.244519984,
15068493151 ,-726406.447886715 27233. 46094836.853939.908835076,
17808219178,1490292.39853028,-880711.65177855 280.7.
15068493151,-1354916.03 1916 2377735.9439786.
15068493151,-1117079.858, 558/, 2950258. 8138/422,406 38.672
23287671233,6395905.58002461,22925.5904244734,-6418531.17044908,
15068493151,-11482383.1179765,8303214.45881975,3179468.65915676,
17808219178,8182123.23753653, 119078705, 2827793,10896882. 0452428,
15068493151,13781717.2 61508,201/611“ 85018/5,-3395/5:0 1263
17808219178,-54731235.0710889,7828176.03390251,46903359. 0371863
15068493151, 86:05:/5 486/:4:,-/506469: 6093668,-11240381.8773675,
15068493151,-42639781.6432979,149729334. 9;74;3 -107089253.29414,
7808219178, -146//105;.915;/9 -130296383.6050! 6,;//06//36 5;0;86,
1506849:151 456862243 ,289809,-125654176. 957:6 -331207766.302449,
17808219178,-630558244.777592,656748004.770432,-26189459. 99“8:97
15068493151,150145178. 04394/,-11480997L0 59609 1997954842 .
15068493151 1441909161.9895,769238591.755174 5211147453 .74
328767123 3727182454.67642,1489862614.703// 2237320139. 96/65
1506849:151 4451761744.95473,-5590268498.43373,1138507053.479,
17805219178,360846986.197297,855 24517.65801,-8943271203. 85531,
15068493151,-13433728189.6036,-3822111176. 7725“ 17255839666.3761,
17808219178,29741319559.7815,-15552791058.0984 114188528201, 6831,
15068493151,-30063302888.4422,46440110956.7652,-16376807768.3229,

Fig. 11: Debug run for rothc example

2.4. FLINT.example

23

moja global Technical Guide

A CMake 3.19.0 - C/D ja-gl i - o X
File Tools Options Help

Where is s global/FLINT/Source | [Browse Source...|
Preset: <custom> <l

Where to build the binaries: [C: ql LINT/Source/build <] [srowse suid... |
Search: | [Jcrouped [Advanced |AddEntry | |Remove eniry | |Environment...|

Name Value

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Open Project | Current Generator: Visual Studio 16 2019

Fig. 12: Navigating to Cmake Configuration Page

A CMake 3.19.0 - C/D: ja-gl - o X
File Tools Options Help

Where s th de: | global/FLINT/Source | [srowse source...|
Preset: <custom> v‘

Where to build the binaries: [C: g T build <] Browse bui... |
Search: | [crouped [Advanced |AddEntry | [RemoveEntry | |Environment...|

Name Value

Press Configure to update and display new values in red, then press Generate to generate selected build files.

opan P | Cren eneator: Vil S 16 2019

Fig. 13: Checking the flags mentioned

24 Chapter 2. FLINT Development Setup

moja global Technical Guide

A CMake 3.19.0 - C/D ja-gl i - o X
File Tools Options Help
Where is the source code: |C: g NT/Source | [Browse source
Preset: <custom> >
Where to build the binaries: [C: LINT/Source/build <] [srowse suid... |

Search: | [crouped [Advenced Remove Entry

Name Value

CMAKE_AR Ci/Program Files i Visual Studi ity/VC/Tools/MSVC/14.28 29333 /bin/Hostx64/x64/lib.exe
CMAKE_CONFIGURATION_TYPES Debug;Release;MinSizeRel:RelWithDeblnfo

CMAKE_DEBUG_POSTFIX d

CMAKE_INSTALL_PREFIX Ci/Development/Software/moja

ENABLE_MOJACLI
ENABLE_MOJAMODULES.GDAL
ENABLE_MOJAMODULES.LIBPQ
ENABLE_MOJAMODULES POCO
ENABLE_MOJAMODULES.ZIPPER
ENABLE_MOJASYSTEMTEST
ENABLE_TESTS

MOJA _STATIC
PocoFoundation_DIR
PocoJSON_DIR

Poco_DIR
RUN_UNIT_TESTS_ON_BUILD
VCPKG_APPLOCAL_DEPS
VCPKG_TARGET_TRIPLET x64-windows

SS9

Ogge0O0O

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Open Project | Current Generator: Visual Studio 16 2019

Building: moja.modules.libpa

Building: moja.modules.gdal

Building: moja.cli

Building: moja.systemcest

CMake 3.19.0 successfully configured moja using Visual Studic 16 2019 generator
Installacion target path: C: 32

C_FLass
CXX_FLAGS:=/DNIN32 /D_WINDOWS /W3 /GR /EHsc
Configuring done

Fig. 14: Configuring the new options highlighted in red

A CMake 3.19.0 - C/D: ja-gl - o X
File Tools Options Help

Where s the source code: | global/FLINT/Source | [srowse source...|

Search: | | [Grouped [] Advanced | Add Entry Remove Entry Environment.

Preset: <custom> v

Where to build the binaries: [C: gl INT/Source/build <] Browse bui

Name Value

CMAKE_AR Ci/Program Files isual /Tools/MSVC/14.28.29333/bin/Hostx64/x64/lib.exe
CMAKE_CONFIGURATION_TYPES DebugiRelease;MinSizeRel:RelWithDeblnfo

CMAKE_DEBUG_POSTFIX d

CMAKE_INSTALL_PREFIX
ENABLE_MOJACLI
ENABLE_MOJAMODULES.GDAL
ENABLE_MOJAMODULESLIBPQ
ENABLE_MOJAMODULES.POCO
ENABLE_MOJAMODULES ZIPPER
ENABLE_MOJASYSTEMTEST
ENABLE_TESTS
GDAL_INCLUDE_DIR
GDAL_LIBRARY

MOJA _STATIC
PocoDataSQLite DIR
PocoData_DIR
PocoFoundation_DIR
PocoJSON_DIR
PocoMongoDB_DIR

PocoNet DIR

Poco DIR
RUN_UNIT_TESTS_ON_BUILD
VCPKG_APPLOCAL_DEPS
VCPKG_TARGET TRIPLET x64-windows

fmt DIR C/D

(DIR libmongocxx_DIR-NOTFOUND

/Development/Software/moja

S O

5SS 0S50 0

Oecooooocneen

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate | | Open Froject Current Generator: Visual Studio 16 2019

Building: moja.modules.libpq

Building: moja.modules.gdal

Building: moja.cli

Building: moja.systemcest

CMake 3.19.0 successfully configured moja using Visual Studic 16 2015 generator
1 target path: C.

C_rass

¢ DNIN32 /D_WINDOWS /W3 /GR /Edsc
Configuring done

Fig. 15: Generating the new configuration

2.4. FLINT.example 25

moja global Technical Guide

|4 Live Share

Solution Explorer

& 3

- B
-

(1]
|
e
L

- - -
= I I I TN
ot ¥ = Lt LA L b i

'] Solution 'moja’ (16 of 16 projects)
B CMakePredefinedTargets
% dist

moja.cli

moja.core
moja.datarepository
moja.flint
moja.flint.configuration
moja.modules.gdal
moja.modules.libpg
moja.modules.poco
moja.modules.zipper
moja.systemtest

R e ™

A AL

uninstall

Git Changes

Properties

i CMiakePredefinedTargets Foider Froperiies -

moja global Technical Guide

Build

Rebuild

Clean

View

Project Only

Scope to This

New Solution Explorer View

Build Dependencies

Remaove
Rename

Unload Project

Load Entire Dependency Tree of Project
Rescan Solution

Display Browsing Database Errors
Clear Browsing Database Errors

Open Folder in File Explorer

Open in Terminal

Properties

Solution Explorer

6 3 8@ pf=

CMakePredefinedTargets
*/ ALL_ BUILD

% INSTALL

*| PACKAGE

*| ZERO_CHECK

ja.flint.configuration
modules.gdal
modules.libpg
. e moja.modules.poco
Ctrl+Shift+X ' -
ja.systemt
uninstall

Git Changes

operties
Ctrl+X \LL_BUILD Project Properties

: |l

Misc

(Name)

Project Dependencies

t Namespace

Name)
pecifies the project name.

Alt+Enter FLINT

Fig. 17: CMakePredefinedTargets ALL_BUILD Screen

ALL_BUILD

Y develop =~

2.4. FLINT.example

27

moja global Technical Guide

Others extensions may be required, please follow instructions during VS Code startup. Extensions required during
development will be installed in the container (listed below).

Building the Project

With these extensions installed, on startup, VS Code should ask if you want to open the project in a Container - OR
you can press F1 and select Remote—Containers: Open folder in Container...

The VS Code project has some launch. json settings in place (in the . vscode folder), these can run both the base
and rothc samples. It is possible to debug into the moja.flint libraries by loading on of the . cpp/ . h files and setting
a breakpoint - OR stepping into a method using the debugger

To build the project the cmake and C++ extensions will be required. These have been specified in the
devcontainer. json file. To build the library use Cmake Configure, Build and Install.

"extensions": [
"ms-vscode.cpptools",
"austin.code-gnu-global",
"twxs.cmake",
"ms-vscode.cmake-tools"

Once the project opens the folder in the dev container, use the cmake commands to configure and build the project.
Once this is done you should be ready to run/debug one of the samples.

NOTE : The libraries require a slightly different paths to work inside the dev-container, so there is a new version of
the library configs for VS Code. These commands will work from the terminal in the running container after cmake
has been successful.

start in the correct folder
cd /workspaces/FLINT.example/Run_Env

sample
moja.cli —--config config/point_example.json --config config/libs.base.vscode.json —-—
—~logging_config logging.debug_on.conf

rothc

moja.cli --config config/point_rothc_example.json --config config/libs.base_rothc.
—vscode.json -—-logging_config logging.debug_on.conf

Chapman Richards - forest point

moja.cli —-config config/point_forest_config.json —--config config/libs.gdal.chaprich.

—vscode. json

Chapman Richards - forest spatial
moja.cli —--config config/forest_config.json —--config config/libs.gdal.chaprich.vscode.
—json —-config_provider config/forest_provider. json

2.4.3 Environment: Docker

In the Docker environment option for setting up FLINT.example, only the run option is available. In case you want to
develop or debug the repository code, please switch to the Visual Studio environments.

28 Chapter 2. FLINT Development Setup

moja global Technical Guide

Prerequisites

¢ Docker

Building the docker

from repository root folder
cd Docker
docker build --build-arg NUM_CPU=8 -t moja/flint.example:bionic

¢ Return to top level folder with cd . .

28 Applications Places @ Terminal Oct22 11:40

o kalilinux@kali: ~/FLINT.Example/Docker

:~$ git clone https://github.com/moja-global/FLINT.Example.git
[Cloning into 'FLINT.Example'
remote: Enumerating objects: 77, done.
remote: Counting objects: 100% (77/77), done.
remote: Compressing objects: 100% (62/62), done.
remote: Total 430 (delta 20), reused 52 (delta 5), pack-reused 353
Receiving objects: 1 (430/430), 2.67 MiB | 238.00 KiB/s, done.
Resolving deltas: 1 169/169), done.

:~$ cd NT.example
bash: cd: FLINT.example: No such file or directory

:~$ cd FLINT.Example

FLINT.Example$ cd Docker

:~/FLINT.Example/Docker$ docker build --build-arg NUM_CPU=8 -t moja/flint.example:bionic .
[sending build context to Docker daemon 5.12kB
Step 1/24 : FROM mojaglobal/flint:bionic as builder
bionic: Pulling from mojaglobal/flint
5b7339215d ownloading] 8.903MB/26.68MB
14ca88e9fo ownload complete
laz1c3bicaal ownload complete
bos4a26005

] 8.57MB/253.5MB
1 8.299MB/42.69MB

8421348 11!
0c35653ef8

24d610ede1s
fe673215be!
c1213b05f6
bfcas1ag08sc: Waiting

Fig. 18: Building the FLINT.example image using Docker

Commands to run using docker - stock result written to screen and results files create (./Run_Env/*.csv):

from repository root folder

For Linux

docker run —--rm -v $(pwd)/Run_Env:/usr/local/run_env -ti moja/flint.example:bionic,,
—bash -c "cd /usr/local/run_env/; moja.cli —--config config/point_example.json —-—
—config config/libs.base.simple. json --logging_config logging.debug_on.conf"

For Windows

docker run —--rm -v %cd%/Run_Env:/usr/local/run_env -ti moja/flint.example:bionic bash
——-c "cd /usr/local/run_env/; moja.cli --config config/point_example.json --config,
—config/libs.base.simple. json --logging_config logging.debug_on.conf"

For the RothC example, you may run this command:-

For Linux

docker run --rm -v $(pwd)/Run_Env:/usr/local/run_env -ti moja/flint.example:bionic,,
bash =c "cd /usr/local/run env/; moja.cli ——config config/point rothc example . dson =
] g i = T ~ 2TF - — (contifues orrnext page)
——config config/libs.base_rothc.simple. json —--logging_config logging.debug_on.conf"

2.4. FLINT.example 29

../prerequisites/docker.html

moja global Technical Guide

(continued from previous page)

For Windows

docker run —--rm -v %cd%/Run_Env:/usr/local/run_env -ti moja/flint.example:bionic bash
—-c "cd /usr/local/run_env/; moja.cli --config config/point_rothc_example.json —-—
—config config/libs.base_rothc.simple.json —--logging_config logging.debug_on.conf"

:~/FLINT.Example$ docker run --rm -v $(pwd)/Run_Env:/usr/local/run_env -ti moja/flint.example:bionic bash -c "cd /usr/local/run_env/; moja.cli --config config/point_example.jso

h —-config config/libs.base.simple.json --logging_config logging.debug_on.conf"

.932371> (info) - Config has files: 2

.932577> (info) - Using Logging Configuration: logging.debug_on.conf

.932606> (info) - Using configurations:

.932627> (info) - config/point_example.json

.932646> (info) - config/libs.base.simple.json

.934129> (info) - Using operation manager: Simple

.934209> (debug) - LibraryManager(46) - LibraryManager: contructor no args

.934271> (debug) - LoadInternallibrary(427) - LibraryMLoadInternallLibraryanager: entered

.934298> (debug) - LoadInternalLibrary(431) - LibraryMLoadInternallLibraryanager: calling AddLibrary : internal.flint

.934331> (debug) - AddLibrary(78) - AddLibrary: entered : internal.flint

.934367> (debug) - LoadInternalLibrary(441) - LibraryMLoadInternallLibraryanager: calling registrations

.934391> (debug) - getFlintModuleRegistrations(107) - getFlintModuleRegistrations: entered

.934418> (debug) - getFlintModuleRegistrations(166) - getFlintModuleRegistrations: exit - 20

.934479> (debug) - getFlintTransformRegistrations(171) - getFlintTransformRegistrations: entered
2020-10-22 .934505> (debug) - getFlintTransformRegistrations(194) - getFlintTransformRegistrations: exit - 9
2020-10-22 .934537> (debug) - getFlintFlintDataRegistrations(199) - getFlintFlintDataRegistrations: entered
2020-10-22 .934560> (debug) - getFlintFlintDataRegistrations(219) - getFlintFlintDataRegistrations: exit - 8
2020-10-22 .934598> (debug) - getFlintFlintDataFactoryRegistrations(224) - getFlintFlintDataFactoryRegistrations: entered
2020-10-22 .934620> (debug) - getFlintFlintDataFactoryRegistrations(230) - getFlintFlintDataFactoryRegistrations: exit - 1
2020-10-22 :37:07.934649> (debug) - getProviderRegistrations(235) - getProviderRegistrations: entered

2020-10-22 .934670> (debug) - getProviderRegistrations(250) - getProviderRegistrations: exit - 2

2020-10-22 .934695> (debug) - RegisterProviders(407) - RegisterProviders: entered : internal.flint : count 2
.934722> (debug) - RegisterProviders(411) - RegisterProviders: loop: @
.934744> (debug) - RegisterProviders(416) - RegisterProviders: loop: internal.flint : RasterTiled
.934769> (debug) - RegisterProviders(411) - RegisterProviders: loop: 1

.934795> (debug) - RegisterProviders(416) - RegisterProviders: loop: internal.flint : sqLite
.934820> (debug) - getProviderRegistrations(235) - getProviderRegistrations: entered
.934845> (debug) - getProviderRegistrations(250) - getProviderRegistrations: exit - 2
.934870> (debug) - RegisterProviders(407) - RegisterProviders: entered : internal.flint : count 2
.934896> (debug) - RegisterProviders(411) - RegisterProviders: 0
.934923> (debug) - RegisterProviders(416) - RegisterProvider: internal.flint : RasterTiled
.934951> (debug) - RegisterProviders(411) - RegisterProvider: 1
.934973> (debug) - RegisterProviders(416) - RegisterProvider: internal.flint : sqLite
.935014> (debug) - AddLibrary(78) - AddLibrary: entered : moja.flint.example.base
.935721> (debug) - RegisterProviders(407) - RegisterProviders: entered : moja.flint.example.base : count @
-935902> (info) - modules loaded:
.935932> (info) - library: internal.flint, module name: CalendarSequencer
.935956> (info) - library: internal.flint, module name: OutputerStream
.935982> (info) - library: internal.flint, module name: OutputerStreamFlux
.936000> (info) - library: internal.flint, module name: TestModulel
.936022> (info) - library: internal.flint, module TestModule2
.936076> (info) - library: internal.flint, module TestModule3
PRI ol

Fig. 19: Running the examples using Docker

Commands to run moja from within the docker - stock result written to screen and results files create
(/Run_Env/*.csv):

For Linux
docker run —--rm -v $(pwd)/Run_Env:/usr/local/run_env -ti moja/flint.example:bionic,
—bash

For Windows
docker run —--rm -v $%$cd%/Run_Env:/usr/local/run_env -ti moja/flint.example:bionic bash

Then inside the running container:

cd /usr/local/run_env/

moja.cli --config config/point_example.json —--config config/libs.base.simple.json —-
—~logging_config logging.debug_on.conf
moja.cli —-config config/point_rothc_example.json --config config/libs.base_rothc.

—simple. json —--logging_config logging.debug_on.conf

Outputs

The runs above will create output files. While Stock values are output to the screen, there will also be some simplace
CVS files created with both Stock and Flux values for the simulation.

30 Chapter 2. FLINT Development Setup

moja global Technical Guide

:~/FLINT.Example$ docker run --rm -v $(pwd)/Run_gnv:/usr/local/run_env -ti moja/flint.example:bionic bash
2/ cd [usr/local/run_env/
usr/local/run_env# moja.cli --config config/point_example.json --config config/libs.base.simple
:40.383302> (info) - Config has files: 2
0.383595> (info) - Using Logging Configuration: logging.debug_on.conf
12:39:40.383632> (info) - Using configurations:
1 0.383657> (info) - config/point_example.json
12:39:40.383677> (info) - config/libs.base.simple.json
1! 0.385225> (info) - Using operation manager: Simple
12:39:40.385309> (debug) - LibraryManager(46) - LibraryManager: contructor no args
0.385380> (debug) - LoadInternalLibrary(427) - LibraryMLoadInternalLibraryanager: entered
12:39:40.385404> (debug) - LoadInternallLibrary(431) - LibraryMLoadInternalLibraryanager: calling AddLibrary : inter
0.385430> (debug) - AddLibrary(78) - AddLibrary: entered : internal.flint
12:39:40.385466> (debug) - LoadInternallLibrary(441) - LibraryMLoadInternallLibraryanager: calling registrations
0.385495> (debug) - getFlintModuleRegistrations(107) - getFlintModuleRegistrations: entered
12:39:40.385520> (debug) - getFlintModuleRegistrations(166) - getFlintModuleRegistrations: exit - 20
0.385578> (debug) - getFlintTransformRegistrations(171) - getFlintTransformRegistrations: entered
12:39:40.385606> (debug) - getFlintTransformRegistrations(194) - getFlintTransformRegistrations: exit - 9
0.385641> (debug) - getFlintFlintDataRegistrations(199) - getFlintFlintDataRegistrations: entered
:40.385665> (debug) - getFlintFlintDataRegistrations(219) - getFlintFlintDataRegistrations: exit - 8
0.385705> (debug) - getFlintFlintDataFactoryRegistrations(224) - getFlintFlintDataFactoryRegistrations: entered
:40.385733> (debug) - getFlintFlintDataFactoryRegistrations(230) - getFlintFlintDataFactoryRegistrations: exit - 1
0.385763> (debug) - getProviderRegistrations(235) - getProviderRegistrations: entered
(debug) - getProviderRegistrations(250) - getProviderRegistrations: exit - 2
(debug) - RegisterProviders(407) - RegisterProviders: entered : internal.flint :
(debug) - RegisterProviders(411) - RegisterProviders: loop: 0
(debug) - RegisterProviders(416) - RegisterProviders: loop: internal.flint
(debug) - RegisterProviders(411) - RegisterProviders: loop: 1
(debug) - RegisterProviders(416) - RegisterProviders: loop: internal.flint
(debug) - getProviderRegistrations(235) - getProviderRegistrations: entered
(debug) - getProviderRegistrations(250) - getProviderRegistrations: exit - 2
(debug) - RegisterProviders(407) - RegisterProviders: entered : internal.flint : count 2
(debug) - RegisterProviders(411) - RegisterProviders: loop: ©
(debug) - RegisterProviders(416) - RegisterProviders: loop: internal.flint
(debug) - RegisterProviders(411) - RegisterProviders: loop: 1
(debug) - RegisterProviders(416) - RegisterProviders: loop: internal.flint
(debug) - AddLibrary(78) - AddLibrary: entered : moja.flint.example.base
(debug) - RegisterProviders(407) - RegisterProviders: entered : moja.flint.example.base :
(info) - modules loaded:
(info) - library: internal.flint, module name: CalendarSequencer
(info) - library: internal.flint, module name: OutputerStream

count 2
: RasterTil

: sqLite

: RasterTiled
: sqLite

count 0

12:39:40.386985>

Fig. 20: Running the moja.cli within Docker

on --logging_config logging.debug_on.conf

Example_Point_Flux.csv
Example_Point_Stock.csv
Example_Rothc_Point_Flux.csv
Example_Rothc_Point_Stock.csv

The Output files created are visible in the below screenshot :-

File Edit View Go Help

€ 1+ [home/kalilinux/FLINT.Example/Run_Env/
DEVICES

B File System
PLACES

B kalilinux

- Desktop
'Trash

= Documents

b

3]

Example_Point
_Flux.csv

h
Example_Point
_Stock.csv

config Example_Roth
c_Point_Flux.c

sV

Example_Roth
c_Point_Stock.
csv

4l Music

8l Pictures

= Videos

% Downloads
NETWORK
[Browse Net...

Fig. 21: Output files created from runs

logging.debug_ Moja_Debug.lo
on.conf g

2.4. FLINT.example

31

moja global Technical Guide

32 Chapter 2. FLINT Development Setup

CHAPTER 3

GCBM Development Setup

This section guides first-time contributors through installing GCBM development environment on Windows.

The GCBM files required for setup are not currently publicly available and can be requested for installation by reaching
out to us on info@moja.global .

The recommended method for installing the GCBM development environment is on Windows using Python 3.7 envi-
ronment.

Contents:

3.1 GCBM Prerequisites

Before we take a leap into the process of development, please take a moment to verify if you have the necessary tools
setup and skills to get started on this project. You should be familiar with the following:

3.1.1 Python 3.7
This document will guide you through the steps for installing the Python 3.7 environment required for running the pre-
and post-processing tools for GCBM.

If you already have Python installed on your computer, follow the instructions in the section Existing Python Installa-
tion .

If Python is not already installed, follow the instructions in the section New Python Installation .

Existing Python Installation
* Locate your existing Python 3.7 installation (where python.exe is located). If you have both 32 and 64-bit
versions installed (common with ArcGIS), find the path to the 64-bit version.

e From a command prompt in the python_3_installer directory, type: install_modules_only
<python path>

33

mailto:info@moja.global

moja global Technical Guide

B C\Windows\system32\cmd.exe — [m} b4

andalone_Template\tools\python_3_installer>install_modules_only c:\py

Fig. 1: Setting up modules for Existing Python Installation

New Python Installation

* Verify that you have no existing Python 3.7 installation — it is not usually possible to install the same version in
two different locations.

* From a command prompt in the python_3_installer directory, type: install_python [optional
install path]

3.1.2 Microsoft Access Database Driver

You may choose to skip this section if you have Microsoft Access installed.

If you do not have Microsoft Access installed, you will need to install a driver to connect to this type of database.
* Double-click python_3_installer\installers\AccessDatabaseEngine_x64.exe

3.1.3 Visual C++ Redistributable Packages

Install the C++ packages required to run GCBM and supporting tools:

¢ Double-click tools\VC_redist\install vcredist.bat

3.2 Windows Installation

This section guides first-time contributors through installing GCBM on Windows.

Before proceeding further, make sure you have the following prerequisites setup:

34 Chapter 3. GCBM Development Setup

moja global Technical Guide

Bl C\Windows\system32\cmd.exe

Fig. 2: Setting up Python and modules for New Python Installation

|
Ll

Home Share View

€ v

[Desktop
J Downloads
=| Documents

&= Pictures
5| OneDrive

= This PC

2 items 1item selected 27.3 MB

« Standalone_Template » tools

Application Tools installers

Manage

" Mame
'ﬂ AccessDatabaseEngine_xfd.exe
e python-3.7.53-amd64.exe

v

» python_3_installer » installers

Date modified

2019-11-13

- O X
2]
o
Type Size
Application
Application

Fig. 3: Installing Microsoft Access Database Driver

3.2. Windows Installation

35

moja global Technical Guide

I [= | Application Tools WC_redist - | x
Home Share View Manage 0
“ v P <« Standalone Temnplate » tools » WC_redist » v Q) Search VC_redist 2

B Desktop "~ MName Date medified Type
|| Documents 2008 2019-11-08 09:42 File folder
¥ Downloads 2013 2019-11-08 09:42 File folder
J‘s Music 2015 2019-11-14 10:02 File folder
= Pictures 2017 2019-11-08 09:42 File folder
- install_vcredist.bat 019-11-14 10:0: Nindows Batch File
m‘uﬁdeos (%] Il dist.b. 2019-11-14 10:02 Wind Batch Fil

ﬂ MDP472-KB4034330-x86-x64-AlI05-EMU.... 2015-03-07 1312 Application

e Windows (C:)
= My Book (D:) v €
Giterns 1itemn selected 332 bytes =

Fig. 4: Installing the C++ packages required to run GCBM and supporting tools

3.2.1 Prerequisites

e Python 3.7
¢ Microsoft Access Database Driver
* Visual C++ Redistributable Packages

Now that you have all the necessary prerequisites, you can proceed with the Installation.

3.2.2 Update GCBM Run Script

Edit run_all.bat and update the Python path to the one used in the Python installation step, and the platform
bit-ness to match your version of MS Access if needed:

= run_all bat E3

Fig. 5: Editing run_all.bat file to update Python path and Platform

36 Chapter 3. GCBM Development Setup

prerequisites/python_3.7.html
prerequisites/microsoft_access_database_driver.html
prerequisites/visual_c++_redistributable_packages.html

moja global Technical Guide

3.2.3 Test GCBM

Double-click the run_gcbm.bat file to run GCBM - if the installation steps were performed correctly, the prepro-
cessing tools, GCBM model, and postprocessing tools should run without any error messages.

b Local (D) » Standalone_Template »

Help

Print Mew folder
Mame Date modified Type Size

. documentation 2/26/2019 2:43 PM File folder
\/ gcbm_project 3/4/201910:11 AM File folder
./ Input_database 3/4/201910:11 AM File folder

\ layers 3/4/201910:10 AM File folder

 logs 3/1/2019 312 PM File folder

\/ processed_output 3/4/201910:19 AM File folder

. tools 3172019 2:38 PM File folder

| EULA.bt 11/27/2018 3:05 PM Text Document 4 KB
|| readme.tet 6/13/2018 8:09 PM Text Document 8 KB
run_all.bat 3/4/2019 10:27 AM Windows Batch File 3 KB

Fig. 6: Running the run_gcbm.bat file to execute GCBM

Viola! We are all done.

3.2. Windows Installation 37

moja global Technical Guide

38 Chapter 3. GCBM Development Setup

CHAPTER 4

Contributing

We’re so glad that you’re thinking about contributing to moja global. We welcome your contributions!

This guide is to help new contributors to know more about how they can contribute to moja global. It also covers some
of the best code contribution practices adopted by moja global to ensure readability and maintainability of code.

Contents:

4.1 Before making a contribution

* Please checkout our Git and Github guide for detailed instructions on how to setup this project and make a pull
request.

¢ Please follow our Code of Conduct at all times.

* Make sure your contribution follows the moja global best contribution practices.

4.1.1 Join our communication Channels

If you are new to moja global, joining our communication channels can help you connect with community members
and fellow contributors who can help answer your queries. In case you are facing any issues with the project setup or
are looking for issues to contribute to, this would be a good place to start. Please check out our Join us section for
more information on how to join our communication channels.

4.1.2 Contributors Website

If you are a first-timer then please checkout our Contributor Website . Here you can find out beginner friendly is-
sues across all moja global repositories and even get featured as a new contributor! Along with checking out our
Contributing workflow, you may also reach out to us through the contact form and share your interesting ideas with
us!

39

../DevelopmentSetup/git_and_github_guide.html
coc.html
code_contribution_best_practices.html
../contact.html
https://contributors-website.herokuapp.com/

moja global Technical Guide

4.2 Ways to contribute to moja global

There are plenty of ways you can contribute to moja global repositories. Apart from contributing code, moja global
would love any kind of help for non-code related issues as well.

4.2.1 Review & Contribute Science Design
Most of our code is informed by an underlying Science Design. We develop these designs collaboratively and your
contributions are most welcome!
Follow the following steps to contribute to or review a science design:
¢ Find the Science Design

— Every moja global repository will have a folder called “Science” in the root directory

The Science folder will contain 2 types of Science Designs:
+ PDF files contain completed science designs.

+ .md files contain a link to science designs under development.

Locate the PDF file with the highest version number for review

Locate the .md file with the highest version number for a contribution

If no .md file is available, proceed with agree on a Science Design
* Review Science Design

— Open the PDF file you want to review

Changes or suggestions are not possible

If you detect an inaccuracy or want to propose an improvement, check whether your change has already
been made in the .md file with the highest version number

If the change has not been made yet, continue with contribute to a science design below.
* Contribute to a Science Design

— Open the .md file with the highest version number.

— Follow the link to the Google Doc with the ongoing science discussion

— Contact the Document Owner to join the discussion or just leave a comment in the text.

4.2.2 Suggest UI/UX Improvements
One of the most important areas of improvement to our flagship software FLINT is the user interface. We really need
your help with this!

If you have ideas on how we can improve, please share them with us by creating a new issue. We could then start a
new project for your idea!

4.2.3 Contribute Translations

Right now our interfaces do not support translations and we also don’t have a translation strategy in place. But we
want to change this. We want our projects to be accessible to non-English speakers. If you have any ideas then please
share them with us by creating a new issue.

40 Chapter 4. Contributing

https://github.com/moja-global/About_moja_global/issues/new/
https://github.com/moja-global/About_moja_global/issues/new/

moja global Technical Guide

4.2.4 Coach or Train New Contributors
moja global has defined the following roles to help contributors to achieve their maximum potential while working on
moja global repositories.

Coaches are experienced coders or scientists or users who are available to work shoulder to shoulder with new coders,
users, or contributors

Ambassadors are experienced coders or scientists or users who are available to provide training to groups of new
coders, users, or contributors

For adding yourself as a Coach or Ambassador, reach out to us over mail on info@moja.global. Please ensure you
have a track record that proves you know the proposed repository for Mentorship, its purpose and contents well.

Please wait for a few days for us to get back to you. After adding yourself as a Coach or Ambassador, please complete
the following steps on our GitHub.

 Ensure you have already claimed credit for your work in the past

* Add your name to Coaches/Ambassadors in the README document by copying your avatar and name from
the all-contributors section and pasting it under the Coaches/Ambassadors header.

* Submit a Pull-Request with your proposed changes

4.2.5 Answer user Questions
Please help moja global be an active and responsive open source organization! Here is how you may answer user
queries.

* Join moja global by emailing on info@moja.global. You will receive a slack workspace invite where you may
join us for further discussions on the project of your interest.

* You can review and answer contributor questions on open issues in your repository/team repositories on our
GitHub organization .

* You may also review discussions and answer new users queries on moja global’s Slack workspace

« If the reply could be useful for others, please add it as an entry under the FAQ section on the README of your
repo or in this documentation repo FAQ section for general moja global questions.

* Don’t forget to Claim credit for your contribution

4.2.6 Organize moja global events/meetups
moja global believes events are important to reach out to new users or improve collaboration. If you are planning to
organize events to spread the message of moja global and invite contributors, here are the steps to follow:

¢ Please send an email to info@moja.global with a clear and descriptive subject.

* Please provide background or references to prove your good intentions if you do not have a track record on
GitHub. You may also attach files, screenshots and animated GIFs to better illustrate your ideas.

Please allow us a few days to get back to you. Don’t forget to let us know how the event was!

4.2.7 Are There Other Ways of Contributing?

Yes, there are a lot of other ways in which you can help us!

4.2. Ways to contribute to moja global 41

mailto:info@moja.global
index.html#get-credit-for-your-contribution
mailto:info@moja.global
https://github.com/moja-global
index.html#get-credit-for-your-contribution
mailto:info@moja.global

moja global Technical Guide

You can help us in administration, fundraising, website development, communication/outreach. You can also offer
strategy advice. You can even join our strategy board!

If there’s some other way, not listed above, in which you’d like to help, then please drop us a line at info@moja.global.
We’ll get in touch with you!

4.3 After making your first contribution

4.3.1 Get credit for your contribution

We use the All Contributors Bot to recognize contributors.

To get recognized, just add the following line to a comment after making your contribution (like submitting a pull
request, replying to a question, resolving an issue, etc.)

@all-contributors please add <@username> for <contributions>

Replace <@username> with your GitHub username and <contributions> with any word from this list.

If you wish to know more about the all-contributors bot usage in moja global, please checkout the Bots and
Integrations section.

4.3.2 Report Bugs, Provide Feedback or Request Features

We welcome all kinds of bug reports, user feedback and feature requests!

If you find an easily reproducible bug and/or are experienced in reporting bugs, feel free to just open an issue on the
relevant project on GitHub.

We’ve created some issue templates to assist you in this. Please use them to create a new issue in the relevant project’s
repository.

4.3.3 Pick more complex issues to work on

Now that you have your first contribution merged, you may move on to issues without Good for newcomers and
Help Wanted labels. For specific areas of interest, please filter out the issues with specific labels of your interest.

4.3.4 Help other contributors take their first step

Now that you have made your first contribution, it is time to help other contributors to start their journey. There are a
variety of ways in which you can help and guide them to their first contribution!

Reviewing contributions

moja global welcomes all contributors to review each others pull requests and suggest changes. You may also choose
to review other contributions by following this guide here.

42 Chapter 4. Contributing

mailto:info@moja.global
https://allcontributors.org/docs/en/emoji-key
../DeveloperWorkflow/bots_and_integrations.html
../DeveloperWorkflow/bots_and_integrations.html
https://help.github.com/en/github/managing-your-work-on-github/creating-an-issue
../DeveloperWorkflow/reviewing.html

moja global Technical Guide

Answering their queries

moja global urges all contributors and community members to help each other out with queries on Slack/GitHub. This
can help new contributors in setting up moja global repositories and will drive the path to their first contribution. For
more details on how to answer queries, please follow this guide here.

Mentor new contributors

If you know the contents of the repository well and would like to help contributors reach milestones in the development
of the repository, then you may take up the role of a Coach or Ambassador to guide and work with new contributors.
We believe this kind of healthy collaboration can nurture young coders and provide a platform to grow for both the
parties. If you are interested, please check out this guide to know more about these roles.

Create beginner-friendly Issues

You may also create beginner friendly issues for new contributors to claim. Please ensure that the difficulty level
of these issues are easy and if possible can be implemented without the need for setting up the Project completely.
Since these issues are targeted at beginners, please share all necessary details required to solve the issue (eg. File-
names that require change) in the issue description and label the issues with one or more of the following labels
good-first-issue, Good for newcomers or Help Wanted.

4.4 Code Contribution Best Practices

This guide is to inform new contributors about the best practices followed by moja global. Before making any contri-
bution please go through these guidelines to ensure your contribution can be merged with minimal changes.

4.4.1 Commit Guidelines
* Make sure your commit is passing all the tests. If your commit is failing tests then please try to fix the same
commit instead of making a new commit by using git —--amend

e Every commit should be directed to solve a single problem instead of trying to solve multiple issues at once.
This encourages simplicity and also makes it easier for the reviewers to review.

* If the code introduced in the commit decreases the coverage/requires tests, don’t forget to add them too.

Although it’s encouraged to make commits following these guidelines but incase you missed, you can always fix your
history using git rebase -i.

4.4.2 Commit Message Guidelines

» Keep the commit message short but concise explaining your changes and the problem you are trying to solve.

e Try to write the commit messages in an imperative tone for example:- ‘Fix’, ‘Update’, ‘Add’ instead of ‘Fixed’,
‘Updated’, ‘Added’.

* Reference the issue solved in the commit message, for example:- Fixes #8293: Add login api
unit tests. This will automatically close the issue referenced when your pull request gets merged.

4.4. Code Contribution Best Practices 43

ways_to_contribute.html#answer-user-questions
ways_to_contribute.html#coach-or-train-new-contributors

moja global Technical Guide

4.4.3 Developer Certificate of Origin

moja global follows Developer Certificate of Origin(DCO) as a method to certify that the contribution you have
submitted was created in whole or in part by you and you have the right to submit it under the open source license to
moja global.

To apply this, please sign off all your commit messages with a line like this:
Signed-off-by: Random J Developer <random@developer.example.org>

Alternatively, you may also add the ——signoff flagtothe git commit command that will automatically add this
line to your commit message.

4.4.4 Code Style & Conventions

This section will focus on the style guidelines and conventions used by moja global across its repositories.

Depending on the language of the repository you are working on, we have an array of tools and checks to ensure that
the Code Style is not violated to promote further maintainability of code.

We encourage you to add the mentioned tools as plugins in your editor.
¢ C++ Repositories:

moja global follows the C++ style guide developed by Google for their open-source projects. The google style
guide is aimed at enable coders to utilise the power of C++ while at the same time managing the potential
complexity that can arise when coding in C++.

The style guide can be found at: https://google.github.io/styleguide/cppguide.html

It is possible that exceptions to the google style guide may be specified, in which case they will be listed here.
Currently there are no exceptions.

— Coding enforcement: We know that the style guides are long and detailed and not always easy to adhere
to. As such, the intention is to use Clang-Tidy as a tool to check and correct code formatting as determined
by the Google C++ style guide. This will be implemented as an automated check through the Continuous
Integration system.

¢ Python Repositories:

moja global follows the Python Style guide PEPS8 that provides coding conventions for Python code. It is fairly
common for Python code to follow this style guide. It’s a great place to start since it’s already well-defined.

This guide can be found at : https://www.python.org/dev/peps/pep-0008/

— Coding enforcement: In order to enforce the PEP8 conventions along with error detection, Pylint as a tool
can be used and can be integrated with your editor as well. This will be implemented as an automated
check through the Continuous Integration system.

4.5 Code Of Conduct

moja global governs its participants according to the Contributor Covenant Code of Conduct. As a contributor, you
agree to uphold this code. Please report unacceptable behavior to info@moja.global. If you want your report to be
handled confidentially, please report to guy @moja.global.

44 Chapter 4. Contributing

https://developercertificate.org/
https://google.github.io/styleguide/cppguide.html
http://clang.llvm.org/extra/clang-tidy/
https://www.python.org/dev/peps/pep-0008/
https://www.pylint.org/
mailto:info@moja.global
mailto:guy@moja.global

moja global Technical Guide

4.5.1 Contributor Covenant Code of Conduct

4.5.2 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

4.5.3 Our Standards

Examples of behavior that contributes to creating a positive environment include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
 Gracefully accepting constructive criticism
* Focusing on what is best for the community
» Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
» The use of sexualized language or imagery and unwelcome sexual attention or advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others’ private information, such as a physical or electronic address, without explicit permission

¢ Other conduct which could reasonably be considered inappropriate in a professional setting

4.5.4 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

4.5.5 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

4.5.6 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at guy @moja.global. All complaints will be reviewed and investigated and will result in a response that is deemed

4.5. Code Of Conduct 45

mailto:guy@moja.global

moja global Technical Guide

necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard
to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

4.5.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

46 Chapter 4. Contributing

https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq

CHAPTER B

GitHub Workflow

moja global as an Open source organisation wants to provide their users the best possible collaborative experience
while meeting their security requirements and limiting their maintenance effort. Working on a collaborative plat-
form like GitHub at times can be overwhelming, especially as the number of users and repositories grow within an
organization.

This had led to the adoption of some GitHub workflow practices to ensure the smooth working of moja global. These
practices include repository maintainance practices, automated checks for pull requests as well more advanced testing
methodologies and bots to ease the workflow.

Contents:

5.1 GitHub Repository maintenance

This section guides contributors and maintainers on the guidelines to follow while setting up a new repository and
maintaining it under moja global.

5.1.1 Repository Creation

New repository under moja global is generated from the template repository Import-me. This ensures that the start-up
files for a standard moja global repo is already included in the new repository and the commit history also remains
clean.

Follow these steps to generate your new repository from Template repository:
* Navigate to https://github.com/moja-global.
¢ Select the New button for new repository creation.

* On the create repository page, select the template Import-me from the dropdown titled Repository
Template.

47

https://github.com/moja-global/Import-Me
https://github.com/moja-global

moja global Technical Guide

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Repository template
Start your repository with a template repository's contents.

No template -
+ No template
e moja-globalllmport-Me
@ moja-global ~ /
Great repository names are short and memorable. Need inspiration? How about literate-octo-winner?

Description (optional)

» Upon selecting the template, please make sure the checkbox for include all branches is unmarked.

Repository template
Start your repository with a template repository’s contents.

@ moja-global/lmport-Me -

(] Include all branches
Copy all branches from moja-global/import-Me and not just the default branch.

Oowner * Repository name *
e moja-global ~ / new-repository v
Great repository names are short and memorable. Need inspiration? How about literate-octo-winner?

Description (optional)

[new repository generated from template examplel]

O Public
m= Anyone on the internet can see this repository. You choose who can commit.

@ Private
You choose who can see and commit to this repository.

Create repository

* Now go ahead and add details of your repository name,description and visibility setting (Public or Private).

* Click on the Create repository button as the final step!

48 Chapter 5. GitHub Workflow

moja global Technical Guide

5.1.2 Setting up Labels for your repository

Labels are visual tools for the project. They make it easier to filter issues and prioritize tasks. Additionally, they also
help new contributors identify areas of interest for your project.

They can help improve awareness of different types of contribution methods in the project. (e.g. science, communica-
tion and documentation tasks).

e Navigate to https://github.com/moja-global/<repository_name>/labels where
<repository_name> is the name of the new repository created. You can find all the labels setup for
your repository here. In order to create a new label, click on the New Label button.

 Labels P Milestones Search all labels New label

* Configure each issues’ labels in a way that makes sense for your project. The labels should classify the is-
sues/pull requests in an appropriate manner so they can be easily applied for filtering later. Every issue and pull
request labels can be found under the Issue tab with the labels button.

Filters ~ is:issue is:open O Labels 18 > Milestones 1

moja global has the following labels available on an organisational level. You can use the labels depending on the
issue, and make new labels specific to the repository, if needed as explained above.

It is recommended to provide every issue with 4 types of labels: 1 from each type of label below.
Category:

* Cat = Blocked = Progress on the issue is Blocked, either due to waiting for another code change, or not in
control.

e Cat = Bug = Something isn’t working
* Cat = Comms = Propose a way to better communicate a feature

* Cat = Doc = Adding or updating documentation

* Cat = Good for newcomers = These issues require minimal context and are well-suited for new con-
tributors
* Cat = Feedback = Describe how we can improve your experience

* Cat = Help Wanted = Anybody out there, can you give me a hand?
e Cat = Need Info
* Cat = New Feature = Suggest an idea for this project
* Cat = Science = Suggest how the science can be improved
Priority:
e Priority = High = High Priority issues/pull request that require immediate attention

e Priority = Low = Low Priority issues/pull request that require attention only after Mid Priority issues are
resolved.

* Priority
resolved.

Medium = Mid Priority issues/pull request that require attention after High Priority issues are

Time:

e T

1 Hour = Resolving this issue will take about 1 hour

e T

2 Hours = Resolving this issue will take about 2 hours

5.1. GitHub Repository maintenance 49

moja global Technical Guide

e T = 4 Hours = Resolving this issue will take about 1/2 day

e T = 8 Hours = Resolving this issue will take about 1 day

e T = Break me up = This issue takes more than 1 day and needs to be broken up into smaller tasks
Difficulty:

* X = Easy = This is a good issue for new contributors
e X = Intermediate = Solving this issue requires some experience

e X = VeryDifficult = Solving this issue requires advanced expertise

5.1.3 Creating and maintaining Project Boards
Project boards on GitHub help you organize and prioritize your work by creating them for specific feature work,
comprehensive roadmaps, or even release checklists.
There are 2 types of project boards available:
* Repository: Boards for use in a single repository.

* Organization: Boards for use in a GitHub organization across multiple repositories (but private to organization
members)

Moja global team uses boards for development and documentation at the repository level. It means repository-specific
boards for focused work in each repository.

Creating your first board
* Project boards can be found under the the Projects tab in the same row as Issues and Pull requests on a
specific repository.

* If you have enough permissions on the repository or as an organisation member, then you’ll be able to create a
new project by clicking on the green button labeled Create Project.

Code Issues 1 Pull requests 2 Actions [Projects Wiki Security Insights Settings

Organize your issues with project boards Leam More

Did you know you can manage projects in the same place you keep your code? Set up a project board on GitHub to streamline
and automate your workflow.

» Configure the name and description for the project board. You can also choose templates to set up basic columns
and sorting for your board. Currently, moja global team selects Basic kanban for Kanban-style boards.

50 Chapter 5. GitHub Workflow

moja global Technical Guide

Code Issues 1 Pull requests 2 Actions [Projects Wiki Security Insights Settings

Create a new project

Coordinate, track, and update your work in one place, so projects stay transparent and on schedule.

Project board name

sample board

Description (optional)

A sample project board

Project template

Save yourself time with a pre-configured project board template.

Template: Basic kanban ~

Create project

» After creating the project board, you may make adjustments to it as needed. You can create new columns, set
up automation and add pre-existing GitHub issues and pull requests to the project board.

However, it is recommended that the contributors use the existing board in each repo rather than creating a new board
unless necessary.

Adding issues/pull requests to your Project Board
After you set up a project board, you need to populate it with issues and pull requests and keep updating the board on
a regular basis.

The Basic kanban template offers the following columns for every issue/pull request. You may classify your
issues/pull requests into one of according to the criteria below.

» Todo: Open issues/pull requests, Reopened issues/pull requests
* In progress: Issues that have been assigned, pull requests that are open and reviewed
* Done: Closed issues/pull requests, Merged pull requests
In order to add a issue/pull request to a project board, follow these steps:
» Navigate to the specific issue/pull request.

¢ Under the right sidebar, check out the Projects tab. Click on the settings icon next to the Projects tab
and select the relevant project board. If the settings icon is not visible to you, then you don’t have enough
permissions to add an issue/pull request to a project board.

5.1. GitHub Repository maintenance 51

moja global Technical Guide

Assignees 61
o leitchy
) malirancis

- mfellows

.gmaian

N w123

o Tlazypanda

Labels £

Epic Application Deployment | Priority = High

Projects @8

Projects

i]

Recent | Repository Organization

Enhancement of project managemen...

moja-globalfAbout_maja_global

Testing Process Board

moja-global/About_maja_global

Notifications Customize
L Unsubscribe

ou're receiving notifications because you wers
assigned.

* After selection of the board, you may classify it into one of the three columns by clicking on the Awaiting
Triage dropdown and selecting any one of the above options (Todo, In progress, Done).

member = () -e+ Assignees
Mo one—assign yourself
e all internal
Labels
MNone yet
Projects

[[T] Testing Frocess Board
I
Awaiting triage ~
7 Bdowe card to col
rmatigr Meve card to column
1 simple To do

more |
In progress

Done

Successfully merging a pull request may close this

Issue.

I Mone yet

* Once you have classified your issue/pull request into the correct column, you can see an update for the same

shown in your issue.

52

Chapter 5. GitHub Workflow

moja global Technical Guide

|E| & Tlazypanda added this to To do in Testing Process Board now

* Now if you need to update the column, navigate to the Projects tab. You can then drag-and-drop issues/pull
requests from one column to another as per your convenience.

Testing Process Board @I

Updated 4 minutes ago

2 Todo === 1 In progress S LLL 1 Done T+ =ex
(D EPIC for Communicati ng tool about b @ Summary of Internal communication @ Adopt code of conduct for moja global - --
development #77 opened by Patamap projects
#43 opened by gmajan #42 gpened by Patamap
TRINIEY) Friority = Medium
T =8 Hours _ Cat=Needinfo Priority = Low ®
"-‘PTEchl' cal Onboarding 2020 (.

() Set up useful Label
#44 opened by botmojaglobal

)

¥ = Easy
'T’Téclu' cal Onboarding 2020 ‘.

Build project boards into your workflow
After you set up a project board and populate it with issues and pull requests, you need to integrate it into your
workflow. Project boards are effective only when actively used.

The moja global team uses the project boards as a way to track our progress as a team, update external stakeholders
on development, and estimate team bandwidth for reaching our milestones.

The following image shows how we can track progress with GitHub project boards.

Q, is:open New project

[2 0pen + 0Closed Sort =

Enhancement of project management processes Project board to track documentation progress on enhancement of project management processes and tools. ***
and tools This board focuses on the improvement of the project management process, tools, techniques, and
(O Updated 27 days ago documentation, and includes a queue of questions to answer about Moja Global. Add your own too!

Original tracking tasks are in this link. https://docs.google.com/spreadsheets/d/1Zf2AK-
dnTZwKpsdxKkFLNeZTTrviONXkleT8nngrvC4/editgid=0

Testing Process Board No description

As moja global is an open-source project and community, consider using the project boards to update other team
members, and encourage participation inside of GitHub issues and pull requests.

5.1. GitHub Repository maintenance 53

moja global Technical Guide

In the meanwhile, we also consider using the project boards for development. It also helps remind us and other core
contributors to spend 5 minutes each day updating progress as needed.

5.2 Bots and Integrations

moja global makes use of an array of bots and integrations with GitHub in order to provide a smooth experience to
new contributors and to also make the process of contributing as effortless as possible.

This section focuses on the bots used within the organization and how to maintain them.

5.2.1 All-contributors Bot
All-contributors bot is a GitHub bot to automate acknowledging contributors to your open source projects. This is

achieved by setting up a contributors table in the readme which is edited according to the commands given to our bot.
This bot is created and maintained by the all-contributors organisation here.

Usage

* Add a contributor : Comment on Issue or Pull Request, asking @all-contributors to add a contributor:

@all-contributors please add <username> for <contributions>

* <contribution> : See the 'Emoji Key (Contribution Types Reference) <https://
—allcontributors.org/docs/en/emoji-key>"_ for a list of valid contribution types.

* Intent-Based Bot : Your request to the bot doesn’t need to be perfect. The bot will use basic Natural Language
Parsing to determine your intent. For example, this will work too:

Jane you are crushing it in documentation and your infrastructure work has been great
—~too. Let's
add jane.doe23 for her contributions. cc Q@all-contributors’’

* The bot will then create a Pull Request to add the contributor, then reply with the pull request details.

Contributing

If you wish to configure or modify the bot settings according to the needs of the repository, you may update the .
all-contributorsrc JSON file. The data used to generate the contributors list will be stored in there, and you
can configure how you want @all-contributors to generate the list. Here are more details on the configuration
options available.

5.2.2 Botmojaglobal

Botmojaglobal uses @zulipbot, a GitHub workflow bot from the zulip organisation, to handle issues and pull requests
in our repositories in order to create a better workflow for contributors. This bot is created and maintained by the zulip
organisation here.

54 Chapter 5. GitHub Workflow

https://github.com/apps/allcontributors/installations/new
https://github.com/all-contributors/all-contributors
https://allcontributors.org/docs/en/bot/configuration
https://allcontributors.org/docs/en/bot/configuration
https://github.com/zulip/zulipbot

moja global Technical Guide

Usage
¢ Claim an issue : Comment @botmojaglobal claim on the issue you want to claim; @botmojaglobal
will assign you to the issue and label the issue as in progress.

— If you’re a new contributor, @botmojaglobal will give you read-only collaborator access to the repository
and leave a welcome message on the issue you claimed.

— You can also claim an issue that you’ve opened by including @botmojaglobal claim in the body of
your issue.

— If you accidentally claim an issue you didn’t want to claim, comment @botmojaglobal abandon to
abandon an issue.

¢ Label your issues : Add appropriate labels to issues that you opened by including @botmojaglobal add in an
issue comment or the body of your issue followed by the desired labels enclosed within double quotes (*).

— For example, to add the bug and help wanted labels to your issue, comment or include @botmo jaglobal
add "bug" "help wanted" in the issue body.

— You’ll receive an error message if you try to add any labels to your issue that don’t exist in your repository.

— If you accidentally added the wrong labels, you can remove them by commenting @botmojaglobal
remove followed by the desired labels enclosed with double quotes ().

* Find unclaimed issues : Use the GitHub search feature to find unclaimed issues by adding one of the following
filters to your search:

— -label: in progress (excludes issues labeled with the in progress label)
— no:assignee (shows issues without assignees)
Issues labeled with the in progress label and/or assigned to other users have already been claimed.

¢ Track inactive claimed issues : If a claimed issue has not been updated for a week, @botmojaglobal will post
a comment on the inactive issue to ask the assignee(s) if they are still working on the issue.

— If you see this comment on an issue you claimed, you should post a comment on the issue to notify
@botmojaglobal that you’re still working on it.

— If @botmojaglobal does not receive a response from the assignee within 3 days of an inactive is-
sue prompt, @botmojaglobal will automatically remove the issue’s current assignee(s) and the in
progress label to allow others to work on an inactive issue.

Contributing

If you wish to help develop and contribute to @botmejaglobal, check out the mojaglobal/zulipbot repository fork on
GitHub and read the project’s contributing guidelines for more information.

5.2.3 Welcome Bot

Welcome Bot is a github app that welcomes new users based off maintainer defined comments that should be located
ina .github/config.yml. This app is configured for moja global in order to provide a richer experience to all
new contributors. This bot is created and maintained by the probot organisation here.

5.2. Bots and Integrations 55

https://help.github.com/en/articles/using-search-to-filter-issues-and-pull-requests
https://github.com/moja-global/zulipbot
https://github.com/apps/welcome
https://github.com/probot

moja global Technical Guide

Usage

* Welcome Bot is activated on all repositories : Since the bot config file is already present in . github folder
of import-me template repository, creating a new repository from this template ensures that the welcome bot
is activated on the new repository.

» Features : The bot provides messages for 3 different scenarios and the messages are fetched from .github/
config.ymnml file in each repository:

— newlssueWelcomeComment : This message is displayed whenever a new contributor opens their first issue
in the repository.

— newPRWelcomeComment : This message is displayed whenever a new contributor open their first pull
request in the repository.

— firstPRMergeComment : This message is displayed whenever a new contributor’s first pull request gets
merged in the repository.

You can opt out of having the bot comment on first time pull requests, pull request merges, or new issues by not filling
in a value for each of the above respective fields.

Contributing

If you wish to modfy the messages displayed by Welcome Bot, you may modify the . github/config.yml file in
the repository.

5.3 Automated Checks for pull requests

In order to maintain the code quality and coverage of our repositories, moja global deploys a series of tools. These
tools include our Continuous Integration Setup that runs a complete test suite, Automated Code quality checks as well
as Coverage tracking tools.

This section focuses on how these automated tests are setup and how may they be configured on our GitHub reposito-
ries. Currently only the following checks are available in our FLINT.data_processing repository.

5.3.1 Continuous Integration

moja global uses GitHub Actions for Continuous Integration. GitHub Actions creates an environment based on the
Operating System of your choice (Linux in our case) and runs our test suite. This Continuous Integration script
is triggered by every pull request and only passes when all the tests run successfully. This script also uploads our
coverage report to Codecov for tracking the coverage compared to our base coverage percentage.

* In order to view the pull request build, please click on the Details link of the Python application /
build (push) tab.

* In the case where tests fail, we can debug the problem from going through the console output as displayed here.

 After analysis of the test failure, you may then try to debug the test locally as well by running the command:-

python -m unittest discover tests -v

* Sometimes tests may also fail if your pull request is not rebased to the latest master. So it is recommended to
take a rebase before creating the pull request.

* If you are still facing issues with the test failure, please reach out to the maintainers of the repository.

56 Chapter 5. GitHub Workflow

https://github.com/moja-global/FLINT.Data_Preprocessing
https://github.com/features/actions
https://codecov.io/

moja global Technical Guide

Add more commits by pushing to the test-ci branch on Tlazypanda/FLINT.data.

|
.E"" ° All checks have passed Hide all checks

4 successful checks

v Python application [build (push) Successiul in 22s Details
v e codeclimate — All good! Details
vy a codecovipatch — Coverage not affected when comparing 070a8d1...312ad3d Details
v a codecoviproject — 30.68% (+0.00%) compared to 070a8d1 Details

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request L o view command line instructions.

Fig. 1: GitHub pull request Checks

o add more tests 36d2167 ~ 3 Re-runjobs ~

~ Python application
on: pull_request

@ Lintwith flal

Run tests

Fig. 2: GitHub actions Pull Request Build Console

5.3. Automated Checks for pull requests 57

moja global Technical Guide

5.3.2 Code Coverage Check

moja global uses Codecov as a tool for tracking coverage of our application. As mentioned above, the Continuous
Integration script uploads the coverage report to Codecov. Codecov then compares the coverage percentage to that
of our base pull request and asserts if the Code coverage has increased/decreased. After evaluation, the CodeCov bot
comments on the pull request with the details of our pull request coverage.

If the coverage percentage remains same or higher than before, the check passes. Else if the percentage becomes
lower, the check fails.

¢ In order to debug and understand the failure of this check you may click on the Details tab of the codecov/
project check under Checks tab.

Add more commits by pushing to the test-ci branch on Tlazypanda/FLINT.data.

|
° All checks have passed

v

4 successful checks

Python application / build (push) Successful in 22s
g codeclimate — All good!
a codecovipatch — Coverage not affected when comparing 070a8d1...312ad3d

a codecoviproject — 30.68% (+0.00%) compared to 070a8d1

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request R or view command line instructions.

Hide all checks

Details

Details

Details

Details

Fig. 3: GitHub pull request Checks

* This will navigate you to the Codecov dashboard where you can see the exact files and their Coverage.

» Merge pull request #3 from Tlazypanda/Tlazypanda-patch-1-1

Tlazypanda a month ago «
< 312ad3d I test-ci ® 070a8dl

[Diff B Files £ Build
(=
Files =] .
i flintdata 580 178
Project Totals (8 files) 580 178

Fig. 4: Codecov Dashboard

30.69%

@& Graphs

. Coverage
0 402 30.69%
0 402 30.69%

* Open the file(s) which has led to the decrease of the coverage and find the exact lines which require tests. The
lines marked red here lack tests while the ones marked green are good to go!

58

Chapter 5. GitHub Workflow

https://codecov.io/

moja global Technical Guide

o def set logger(level: str, catch warnings: bool = False) -> logging.Logger:

o

o
1]
. @
[+]

"*"Initialize loggers"""
level = level.upper()

package _logger = logging.getlogger('terracotta')
package logger.setLevel(level)

stream handler
ch = logging.StreamHandler()
ch_fmt: logging.Formatter

if use colors:
fmt = ' {log_color!s}[{levelshortname!s}I{reset!s} {message!s}'

class ColoredPrefixFormatter(colorlog.ColoredFormatter):
def format(self, record: Any, *args: Any) -= Any:
record.levelshortname = LEVEL PREFIX[record.levelname]

return super().format(record, *args)

ch_fmt = ColoredPrefixFormatter(fmt, log_colors=L0G_COLORS, style='{')

else:
o fmt = ' [{levelshortname!s}] {message!s}'

class PrefixFormatter(logging.Formatter):
def format(self, record: Any) -> Any:

0e

record.levelshortname = LEVEL PREFIX[record.levelnamel

return super().format(record)

E a ch_fmt = PrefixFormatter(fmt, style='{')

Fig. 5: Codecov File coverage

* Add tests for the lines mentioned in the above step. This should resolve your coverage failure.

¢ Check your coverage locally by running:-

coverage run —--source flintdata -m unittest discover

* Now that your coverage is all set! Modify the pull request to retrigger the Codecov check.

5.3.3 Code Quality Check

moja global currently uses Codeclimate as our Code Quality tool. Codeclimate is a third-party tool that provides
automated code reviews on every pull request for better code maintainability. If any lines of code can be improved
according to the programming convention, then the check fails providing detailed information on whichever segments

of the code that need to be modified.

* In order to find the Codeclimate check, please click on the Details link of the codeclimate tab.

 This will redirect you to the detailed report on the issues that needs to be fixed on the codeclimate dashboard.
You may also view other files in your code here to check the code quality. The check below depicts the scenario

where no issues are found in your code and the code is ready to be merged!

» After debugging issues (if any) in the previous step and modifying the pull request, Codeclimate will automati-

cally check again against the latest changes.

5.3. Automated Checks for pull requests

59

https://codeclimate.com/

moja global Technical Guide

Add more commits by pushing to the test-ci branch on Tlazypanda/FLINT.data.

|
° All checks have passed Hide all checks

4 successful checks

v Python application / build (push) Successiul in 22s Details
v g codeclimate — All good! Details
g a codecov/patch — Caverage not affected when comparing 070a8d1...312ad3d Details
v a codecovlproject — 30.68% (+0.00%) compared to 070a8d1 Details

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request Sl or view command line instructions.

Fig. 6: GitHub pull request Checks

Test if code climate is getting triggered (3 Compare on Github

e. Tlazypanda wants to merge test-ci into master

All good! No new issues were found.

Issues Ratings

No new, fixed, or changed issues.

Fig. 7: Codeclimate Dashboard

60 Chapter 5. GitHub Workflow

moja global Technical Guide

5.4 FLINT Architecture
5.5 FLINT Performance

5.6 Reviewing a contribution

moja global welcomes all contributors to review each others pull requests and suggest changes. If you have been
contributing to moja global repositories, we highly encourage you to review pull requests as well. Here’s a guide on
how to get started!

Quoting GitHub documentation: “Reviews allow for discussion of proposed changes and help ensure that the changes
meet the repository’s contributing guidelines and other quality standards.*.

As an open source organisation, reviewing pull requests can help to build a deeper understanding of the codebase and
also incorporate good code practices.

5.6.1 General Guidelines for reviewing

* While suggesting changes in the pull requests, the key is to direct your suggestions at the code and not at the
author. This promotes a healthy discussion instead of making someone feel that their code wasn’t upto the
mark.

* Make sure the pull request is rebased and is in sync with the latest target branch. For providing the author
instructions on how to do that, please direct them to our pull request section of Git and GitHub guide.

* Make sure the pull request is directed to the correct target branch.

* Make sure the feature branch, the commit message and the pull request title is concise and appropriate. For
providing the author instructions on how to do that, please direct them to our commit message section of Code
Contribution Best Practices.

¢ Make sure the commits added in the pull request are clean and few in number. This will help us in keeping the
commit history clean.

* If the number of files changed in a pull request is quite high, it might be a good idea to ask the author to split
the pull request into smaller ones if possible.

¢ Check whether all PR checks are passing or not. If not, you may also help the author debug these checks and
help them contribute.

5.6.2 Things to look out for in a pull request

Performance

If the code changes in the pull request can be optimised in terms of Time/Memory Complexity, feel free to suggest
these changes in the pull request. You may use benchmarking tools to find out the difference in Execution Time of the
PR code vs the proposed changes.

Code Style and conventions

If the code is not properly formatted or doesn’t follow the style guide here , please make sure to suggest changes in
the pull request for the same. Following code style and conventions promotes readability and maintainability of code
in the longer run.

5.4. FLINT Architecture 61

../DevelopmentSetup/git_and_github_guide.html#make-a-contribution
../contributing/code_contribution_best_practices.html#commit-message-guidelines
../contributing/code_contribution_best_practices.html#commit-message-guidelines
../contributing/code_contribution_best_practices.html#code-style-conventions

moja global Technical Guide

Documentation

If the code introduces new Features or improves upon existing features that might require documentation to support
the change, then don’t forget to suggest changes in the pull request to add the same. Proper documentation promotes
clarity and makes it easier for future contributors to work on the same feature. For a more detailed guide on how
documentation is to be added for any change, please checkout documentation section here.

Tests

If the code requires additional tests to support its validity, please make sure that proper tests have been added. Also
make sure the tests added cover edge cases and test various scenarios instead of the most commonly used ones.

Design

If the code changes introduce design changes in terms of UI/UX, please ask for screnshots/gif supporting this change.
Feel free to ask for screenshots on devices with different screen sizes such as mobile/tablet view to get a better idea
if the design promotes responsiveness. Responsive design helps the application to be more accessible to people thus
reaching a wider audience.

5.6.3 What to do if you are not sure

As a reviewer, it might be difficult sometimes to figure out whether the pull request changes will work or not. So in
times of doubt, the best way to review is to checkout the contributors branch and manually test the pull request. Here
is detailed guide on manual testing of a pr.

5.7 Manually testing a pull request

This guide is aimed at both authors and reviewers of pull requests to properly test the pull request before merging.

* Checkout to the Pull Request branch by running this command where <author> is the GitHub username of the
PR author

git clone https://github.com/<author>/<repository-name>/
git checkout <branch-name>

* Run the application locally and try to verify if the issue raised has been solved completely by the Pull Request
changes.

If the changes are design specific, try to test the PR in different screen sizes to check if the design is responsive.

* Always keep the console/debugger window open to catch any warnings/errors that might otherwise go unnoticed.

If the application facilitates multiple user sign up, check with different users to catch any permission/security
related issues.

62 Chapter 5. GitHub Workflow

../contributing/code_contribution_best_practices.html#code-style-conventions
manual_testing_pr.html

CHAPTER O

Frequently Asked Questions

6.1 Moja Global

6.1.1 Why is moja global using open source?

moja global is open source for quality and sustainability

The quality of the software is the most important reason for companies to use open source software when it is available.
The quality of the open source software is mainly a result from the pooling of resources from various organisations,
governments and companies who would otherwise be competing as well as the diversity of the contributors. Open
source code management systems have overtaken private systems as open source code has far fewer bugs at the time
the code is accepted.

Open source is a guarantee for sustainability. Once a tool is released as open source, it will remain open source. The
tool has been built by various people who keep the ownership over their contribution. They only give others the right
to use their contribution under the same licence (in moja global’s case mostly MPL2.0). This allows everybody to use
the contribution from everybody else. Undoing this decision is not possible as the licence is irrevocable. Practically, it
would also be impossible because all the small contributions from every person would have to be dealt with separately.

More info is provided in the White Paper - Governments, open source, and moja global.

6.1.2 Are moja global tools free?

moja global’s tools can be used for free
moja global tools are open source and therefore free to use.

The only obligation users have is to share all improvements they make to the software with all other users in line with
the Licence.

moja global does not charge any fees nor seeks payments from users. However, for reasons of sustainability, contribu-
tions - in kind or cash - are necessary. These are always voluntary.

More information about contributions can be found in the document Who Pays?

63

http://www.zdnet.com/article/coverity-finds-open-source-software-quality-better-than-proprietary-code/
https://docs.google.com/document/d/1Q2aVTzWchXQwupbEN7s37xANkPZvrLdfaFyYOT_8Diw/edit?usp=sharing
https://www.mozilla.org/en-US/MPL/2.0/
https://docs.google.com/document/d/15KY1CkCxRzB9ZBp68OLc2eWYuC5W-rqCKnTLaIG4tbg/edit?usp=sharing

moja global Technical Guide

(The misperception is that moja.global is not for free or has hidden costs)

6.1.3 Is moja global controlled by one country?

moja global is a truly global, neutral platform owned by its users
Users own and control moja global. More info on governance can be found here.

All users have the right to take a seat on the board. The strategy board decides on strategy and budget. The board
supervises 2 co-directors. The chair of the technical steering committee is a Canadian national.

At the time FLINT started only two countries in the world had a spatially explicit system using integrating software to
estimate land-sector GHG fluxes. Those were Canada and Australia. The strong points of each of these systems were
taken on in the FLINT design process. As a result FLINT has a number of key ingredients comparable to the software
being used in those two countries.

(Misconception: moja global is Australian/Canadian dominated)

6.1.4 How to contract moja global?

Financial support to moja global is possible as grants to the Linux Foundation

Direct financial support is possible through a grant to the Linux Foundation. The money is released once moja global’s
board approves the expenditure.

However, moja global prefers contributions in kind. Donors can contribute by providing funds directly to contributors,
user groups or countries to enable code development as well as documentation and science support.

moja global does not provide implementation support to countries. This role is provided by some parties in moja
global’s ecosystem (companies, country departments, international organisations, etc.) To remain a credible facilitator,
moja global should not compete with its collaborators.

More information about contributions can be found in the document Who Pays?

6.1.5 What licence is moja global using?

moja global uses mostly MPL2.0

Most moja global software has been released under the open source licence MPL2.0. This means that anybody can
download, use, change and redistribute the open source tools on the condition that you share the improvements you
make with all other users. This way everybody wins.

The licence is soft-copy-left: If you develop a module without using existing moja global parts, you are under NO
obligation to share this module. If you do release it under MPL2.0, that would be great for others of course and very
much appreciated but there is no obligation.

This allows companies to develop specific modules or services using the software for commercial purposes (e.g.
FLINTpro SaaS) They are free to do so as long as they share the improvements to the open source software so
everybody can profit from those improvements.

6.2 FLINT

6.2.1 What is FLINT?

FLINT is a software platform to estimate emissions and sinks of greenhouse gases from land use

64 Chapter 6. Frequently Asked Questions

https://github.com/moja-global/About-moja-global/wiki/moja-global-is-controlled-through-open-governance
https://docs.google.com/document/d/15KY1CkCxRzB9ZBp68OLc2eWYuC5W-rqCKnTLaIG4tbg/edit?usp=sharing
https://flintpro.com/

moja global Technical Guide

FLINT (Full Lands Integration Tool) is moja global’s flagship software platform mainly used for estimating emissions
and sinks from land use (but in the future also for economics, biodiversity, etc).

It is a second generation software that is basically a big calculator that can manage data, keep (Carbon or other) pool
values, and shift (Carbon or other) amounts between pools based on models / modules.

FLINT is building on the first generation tools developed in Canada (CBM-CFS3) and Australia (FullCAM). Those
who designed these first generation tools have joint forces to design and build the second generation tool FLINT.

FLINT is a platform combined with a range of modules that are specific for a particular situation: forest modules,
soil modules, litter, wood products, etc. Developing modules can be done externally and they can be connected to the
FLINT platform as needed. This design option was chosen to create the flexibility to adapt to local circumstances and
to make the development of modules simpler.

Since every user picks and choses its own particular modules, every user ends up with a(n almost) unique configuration.
Several countries have given their national configuration a name: Kenya = SLEEK, Colombia = SEPAC, Indonesia =
INCAS, etc.

6.2.2 What is the difference between moja global and FLINT?

moja global is an organisation; FLINT is a software tool

moja global provides rules and infrastructure to help users to collaborate. Its sole aim is to promote the widest possible
collaboration on and use of its tools.

FLINT (Full Lands Integration Tool) is one of moja global’s open source software tools.

6.2.3 Can beginners use FLINT?

Anybody can use FLINT
The absolute brilliant thing about FLINT is that it is a sophisticated system for entry level users.

Designing a MRV system for the land sector is among the most complex things in the world. Globally there are only a
handful of people who have achieved that level of expertise. FLINT is the product of these brains. In essence FLINT
is a sophisticated system, designed in such a way it can be used by people at entry level. Additional skills, capacity
and depth of understanding are built over time by using the software and through training.

Some level of technical understanding is necessary to run the FLINT. But there is a big difference between the level of
technical understanding needed to design your own national MRV system and the technical understanding needed to
run the FLINT software and understand the calculations. Compare it to a car: to design a car one needs sophisticated
skills. To maintain the car you need practical technical skills. Any lay person with a license can drive the car.

Even to run the system, a user can call on the support of (or hire) other users. Users can only use their own resources ,
use support, or rely on software-as-a-service.

6.2.4 Can we continue to use our old system when switching to FLINT?

FLINT works with whatever is already in place

FLINT is the name for the open source MRV platform offered by moja global. FLINT is combined with science
modules to develop country specific configurations. Country specific implementations make each national system
unique. In Kenya, FLINT is known as SLEEK. In Canada as Generic Carbon Budget Model (GCBM). In Colombia it
is called SEPAC. etc.

FLINT based systems build on the work that has already been done and data that a country has available including
land cover maps, forest inventories, emissions factors, etc.

6.2. FLINT 65

https://docs.google.com/document/d/1W8GYRf2pGeI2MjR9eKpaCRSBeKvQlv9BxxGzBBJwxYU/edit?usp=sharing
https://docs.google.com/document/d/1W8GYRf2pGeI2MjR9eKpaCRSBeKvQlv9BxxGzBBJwxYU/edit?usp=sharing

moja global Technical Guide

(misconception: FLINT forces users to start from scratch and competes with existing national systems)

6.2.5 Can one see how FLINT calculates emissions?

FLINT is fully transparent

The brilliant advantage of open source is that the tool is always available for review. Everybody is invited to review
the code so they can see exactly what the software is doing.

All documentation about the software is accessible.

In addition most modules that can be plugged into the software are open source and have their own detailed documen-
tation.

The aim is to improve the documentation until even those not well versed in IPCC rules can go to the tool, read through
the documentation and get a fairly good sense of how the software works in a matter of days. Where documentation
is not clear, feedback is used to further improve the documentation or even better, those who have questions are
encouraged to suggest improvements to documentation and code.

(Misconception: FLINT is a black box)

6.3 FLINT Installation Support

6.3.1 1 am trying to setup FLINT from the master branch but am running into errors.
What am | doing wrong?

FLINT’s stable development branch is develop. develop branch is the latest updated branch and should be used as a

base branch for development. Therefore, we recommend you to checkout to this branch and target your pull requests
against develop branch. For more instructions on how to do this, please refer to our Git and GitHub Guide .

6.3.2 | use the Mac operating system. Is it possible to install FLINT?

Yes Absolutely! You can install FLINT on Mac using our docker installation .

6.3.3 What is the difference between FLINT and FLINT.example repositories on
moja global GitHub?

FLINT is our framework for estimating emissions and sinks from land use (but in the future also for economics,

biodiversity, etc) where the user has to provide the config files or data. Whereas, FLINT.example provides the user

with some sample example files that the user can run to get a look and feel of FLINT’s output. Hence we recommend
you to first install FLINT.example prior to FLINT.

6.3.4 How to configure Visual Studio for FLINT?

To smoothly work with C++ Development on Visual Studio, we recommend you to add Desktop Development
with C++ workload while undergoing Visual Studio installation process mentioned in our prerequisites section.

66 Chapter 6. Frequently Asked Questions

DevelopmentSetup/git_and_github_guide.html
DevelopmentSetup/docker_installation.html
https://docs.moja.global/en/latest/prerequisites/visual_studio.html#for-visual-studio-2019

moja global Technical Guide

6.3.5 | am trying to setup the Docker installation for FLINT but am running into
errors. What am | doing wrong?

In case of the Docker installation for FLINT, it might be possible that the Docker hardware requirements are not met.
Please ensure that atleast 4 CPU cores & 4 GB of RAM has been allotted to the Docker machine.

6.3.6 | have tried the above but my errors persist. What should | do?

We recommend you to join our Slack workspace and post your queries in the #installation—-support channel.
We will try to get back to you as soon as possible!

6.4 GCBM

6.4.1 What is GCBM?

GCBM is runs CBM science models on the FLINT platform

GCBM (Generic Carbon Budget Model) is a combination of the FLINT platform with the science modules developed
by the Canadian Forest Service.

These are the same science modules used in the first generation tool (CBM-CFS3). Since the science and processes
behind both tools are very similar, it is relatively easy to transition from CBM-CFS3 to GCBM.

The CBM-CFS3 is widely used throughout Canada and globally and its use is supported by the Canadian Forest
Service of Natural Resources Canada.

The next generation GCBM is currently used by the CFS with a number of partner organizations to advance the science
of forest carbon estimation and to support policy analyses such as the assessment of mitigation options in the forest
sector.

6.5 FLINTpro

6.5.1 What is FLINTpro?

FLINTpro is a commercial software as a service version using the FLINT platform

FLINTpro is a cloud-based version of the FLINT platform. It has been developed by the Mullion Group. Using FLINT
for commercial purposes is allowed under the MPL2.0 licence. The Mullion Group is sharing all the improvements to
the FLINT platform with the open source community.

6.4. GCBM 67

https://mojaglobal.slack.com/
https://flintpro.com/

moja global Technical Guide

68 Chapter 6. Frequently Asked Questions

CHAPTER /

Join the moja global family

Welcome to the moja global family! Thank you for taking the first step in connecting with us. We at moja global
believe in healthy collaboration and invite you to join hands.

7.1 moja global Slack

moja global Slack provides a platform for contributors to communicate, discuss ideas and ask questions. It acts as the
primary communication tool used under moja global. The moja global slack is also bound bu our Code Of Conduct.
Make sure you follow the guidelines before posting. We encourage you to be active participants to make moja global
a responsive open source organisation.

In order to receive an invite for the moja global Slack workspace, please email info@moja.global with a description
of the project areas you are interested in. After evaluation from the mentors, you will receive a slack workspace invite.
Please be patient since it may take time for maintainers to respond.

After joining the Slack Workspace, we encourage you to join project specific channels of your interest. You may also
answer other contributors queries or guide contributors towards resources in case they are stuck.

7.2 Technical Steering Committee Meetings

The moja global team hosts a Technical Steering Committee Meeting on every 2nd Wednesday of the month. These
meetings are a way for all the community members to connect, discuss progress and developments from a Technical
viewpoint and engage in collaborative discussions for new/existing projects.

If you are new to the community and want to know more about moja global and meet the team, we highly encourage
you to attend these meetings. Since the discussions here are not catered to a specific topic, this would be a good place
to start and familiarize yourself with our community and work. Interestingly, if you have a new idea for a project or
improvements to an exisiting one, please do join these meetings and share your thoughts with us!

We also recommend all interested GSoC and other student program apsirants to join these meetings to discuss or ask
their queries for any project idea that they might have. The moja global team will be sure to hear you out and provide
early feedback to steer you towards your goal!

69

contributing/coc.html
mailto:info@moja.global
contributing/ways_to_contribute.html#answer-user-questions

moja global Technical Guide

The details for all the meetings are sent out on our Slack. Looking forward to seeing you in the next meeting!

7.3 Outreach and Student Programs

moja global participates in outreach and student programs regularly to welcome and provide students and under-
represented communities an opportunity to work with moja global.

In the past, we’ve participated in programs like Google Summer Of Code (under DIAL), Google Season Of Docs ,
Linux Mentorship Programs and other funding and outreach programs.

Since we receive many applications through these programs, moja global encourages applicants to checkout the fol-
lowing guidelines to maximise chances of getting selected -

 Start early - It is encouraged for applicants to start early in the process to get a better understanding of the
codebase and suggest new ideas. Many of our GSOC alums had started contributing before the application
period and had active engagement in the community.

* Getin touch with us - We would love to hear your project ideas and see how they align with our current codebase.
Just drop an email at info@moja.global and we will get back to you.

¢ Make contributions - It is highly encouraged to make contributions to the existing repositories. Often the ap-
plicants selected are the ones who have made multiple contributions throughout the application period and have
stayed consistent.

* Review peer contributions - Along with making contributions, it is also encouraged to help out other community
members and applicants by providing peer reviews. Code reviews also help to get a deeper understanding of the
codebase.

* Stay active on Slack - Being active and friendly on slack by answering queries asked by other new contributors
is another quality that moja global values and can make your application stand out.

We wish you all the best in your journey!

Most of our outreach program Alums go on to act as maintainers for their projects and mentor other new contributors
in their journey.

Due to limited slots while we can’t ensure selection for these programs, if you are passionate to work on the project
we will definitely try to find an alternative source of funding.

7.4 moja global Outreach

moja global as an organisation is making efforts to manage Climate Change and act as a Change Maker in the envi-
ronmental space. We would appreciate if you can spread the word for our initiative and invite more contributors on
board to help us build more open source tools available for the world.

Here is how you may help our mission:

¢ Star/Fork our projects on GitHub: Our GitHub Organization houses many Open source tools that are under
active development. We encourage you to star/fork these repositories. You may also help us in their develop-
ment.

* Follow us on LinkedIn: Our LinkedIn page provides the latest updates about the use of our Software around the
world. You may also connect with volunteers at our organisation to discuss and engage in collaborative spirit.

* Follow us on Twitter: Our Twitter page also provides concise latest developments of the organisation.

If you have been contributing to moja global for sometime now, you may also:

70 Chapter 7. Join the moja global family

https://mojaglobal.slack.com/
https://developers.google.com/open-source/gsoc/
https://developers.google.com/season-of-docs
https://people.communitybridge.org/#projects
https://mojaglobal.slack.com/
https://github.com/moja-global/
https://www.linkedin.com/company/moja-global
https://twitter.com/mojaglobal?lang=en

moja global Technical Guide

* Write a Blog: Blog about your experience working with moja global and the impact it has had on your skillset.
This will be a great way to let other contributors know about the atmosphere here at moja global.

* Organise meetups: Organise meetups to share your experience in open source by working with moja global
and moja global’s mission.

We appreciate every little step to promote moja global and are extremely grateful for your efforts!

7.4. moja global Outreach 71

contributing/ways_to_contribute.html#organize-moja-global-events-meetups

	FLINT Prerequisites
	For Windows Based systems
	For Linux Based systems

	FLINT Development Setup
	Git and Github guide
	Windows Installation
	Docker Installation (for Mac and Linux Variants)
	FLINT.example

	GCBM Development Setup
	GCBM Prerequisites
	Windows Installation

	Contributing
	Before making a contribution
	Ways to contribute to moja global
	After making your first contribution
	Code Contribution Best Practices
	Code Of Conduct

	GitHub Workflow
	GitHub Repository maintenance
	Bots and Integrations
	Automated Checks for pull requests
	FLINT Architecture
	FLINT Performance
	Reviewing a contribution
	Manually testing a pull request

	Frequently Asked Questions
	Moja Global
	FLINT
	FLINT Installation Support
	GCBM
	FLINTpro

	Join the moja global family
	moja global Slack
	Technical Steering Committee Meetings
	Outreach and Student Programs
	moja global Outreach

